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M A L Capri1, A J Gómez2, M S Guimaraes2, V E R Lemes2 and
S P Sorella2

1 CBPF—Centro Brasileiro de Pesquisas Fı́sicas, Rua Xavier Sigaud 150, 22290-180 Urca,
Rio de Janeiro, Brazil
2 UERJ—Universidade do Estado do Rio de Janeiro, Instituto de Fı́sica—Departamento de Fı́sica
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Abstract
In this paper we address the issue of the Gribov copies in SU(N),N > 2,

Euclidean Yang–Mills theories quantized in the maximal Abelian gauge. A
few properties of the Gribov region in this gauge are established. Similar to
the case of SU(2), the Gribov region turns out to be convex, bounded along the
off-diagonal directions in field space, and unbounded along the diagonal ones.
The implementation of the restriction to the Gribov region in the functional
integral is discussed through the introduction of the horizon function, whose
construction will be outlined in detail. The influence of this restriction on the
behavior of the gluon and ghost propagators of the theory is also investigated
together with a set of dimension 2 condensates.

PACS numbers: 11.10.−z, 03.70.+k, 11.15.−q

1. Introduction

In his seminal work [1], Gribov pointed out that the quantization of Yang–Mills theories
through the Faddeev–Popov method is plagued by the existence of the Gribov copies. Even if
one imposes a subsidiary gauge-fixing condition in an attempt to remove the gauge redundancy,
there still exist field configurations belonging to the same gauge orbit which fulfill such
a condition, i.e. there will be equivalent field configurations, or copies, in the gauge-fixed
theory. As a consequence, the functional measure in the Feynman path integral becomes
ill-defined.

In order to circumvent this problem, Gribov suggested [1] that the domain of integration
in the Feynman path integral should be restricted to a certain region, known as the Gribov
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region, which was supposed to contain inequivalent field configurations only. Nowadays, it is
known that the Gribov region is not completely free from Gribov copies, i.e. additional copies
still exist within the Gribov region [2, 3]. In order to avoid the presence of these additional
copies, a further restriction to a smaller region, known as the fundamental modular region,
should be implemented [2, 3], though a procedure of effectively achieving the restriction to
the fundamental modular region is still beyond our present capabilities. Therefore, in the
following, we shall limit ourselves to investigating the Gribov region.

In [1], the Landau gauge was employed in order to illustrate several aspects related to the
existence of the Gribov copies. In subsequent works [3–6], properties of the Gribov region
in this gauge were established. In particular, in [7, 8], Zwanziger was able to show that the
restriction to the Gribov region could be achieved by adding to the Faddeev–Popov action
an additional nonperturbative term called the horizon function. Remarkably, the resulting
action, known as the Gribov–Zwanziger action, can be cast in the local form and proven to be
multiplicatively renormalizable [7–11]. More recently, in [12–15], dynamical effects related
to the condensation of local dimension 2 operators have been accommodated in the Gribov–
Zwanziger action in a way that is compatible with locality and renormalizability, giving rise to
the so-called refined Gribov–Zwanziger model. As far as the behavior of the gluon and ghost
propagators is concerned, the refined model yields a positivity-violating gluon propagator
which is suppressed in the infrared region and which does not vanish at zero momentum,
while giving a ghost propagator which is no longer enhanced in the infrared region, behaving
essentially as 1

k2 for k ≈ 0. Such behavior, referred to as the decoupling or massive solution,
has also been obtained within the context of the Schwinger–Dyson equations [16–19]. So
far, the behavior of the gluon and ghost propagators in the infrared region obtained from the
refined model seems to be in agreement with recent lattice data in the Landau gauge [20–25],
though we have to underline that no unanimous consensus on this matter has yet been reached,
see e.g. [19, 26, 27] for other possible positions. At present, the issue of the infrared behavior
of the gluon and ghost propagators in the Landau gauge is the object of a rather interesting
and intensive debate.

The effects stemming from the existence of the Gribov copies turn out to be relevant in
the nonperturbative infrared region and might play an important role for color confinement in
QCD. Moreover, this is a central issue toward a correct quantization of Yang–Mills theories.
As pointed out in [28], the existence of the Gribov copies is in fact a general feature of the
gauge-fixing procedure. Besides the Landau gauge, the issue of the Gribov copies has been
addressed in other gauges such as the Coulomb gauge [29] and the linear covariant gauge [30],
which has the Landau gauge as a particular case. Concerning the maximal Abelian gauge,
only the particular case of SU(2) has been discussed so far [31, 32].

In the present work we shall consider the case of Euclidean SU(N), N > 2, Yang–Mills
theories in the maximal Abelian gauge. Let us also recall that this gauge is suitable for
the study of the so-called Abelian dominance hypothesis [33–35], which is one of the main
ingredient of the dual superconductivity mechanism for color confinement [36–38], according
to which Yang–Mills theories in the low energy region should be described by an effective
Abelian theory in the presence of monopoles. A dual Meissner effect arising as a consequence
of the condensation of these magnetic charges might give rise to the formation of flux tubes
which confine the quarks. The maximal Abelian gauge also displays the important property of
possessing a lattice formulation [39–41], while being a renormalizable gauge in the continuum
[42–45].

As already mentioned, several works have been devoted to investigate the effects of the
Gribov copies in the maximal Abelian gauge in the case of SU(2). A study of the influence of
the Gribov copies on the two-point gluon and ghost correlation functions was reported in [32].
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These propagators have also been investigated within the Schwinger–Dyson framework, see
[46]. In [47], general properties of the Gribov region in this gauge were established. In [48], the
horizon function was obtained under the requirements of localizability and renormalizability.
Finally, the inclusion of a set of local dimension 2 operators in the presence of the horizon
function was presented in [49], giving rise to a model which is analogous to the refined
Gribov–Zwanziger of the Landau gauge. It is worth pointing out that the resulting behavior
of the tree-level gluon and ghost propagators obtained in [49] are in good agreement with the
most recent lattice numerical simulations [41] done in the case of SU(2).

In the present work, we attempt to generalize the entire program outlined in the series of
papers [32, 47–49] to SU(N) Yang–Mills theories in the maximal Abelian gauge. The general
case of SU(N), N > 2, is interesting for, at least, two reasons. Firstly, as the symmetry group
of QCD is SU(3), the case of N = 3 is of particular interest. Secondly, as we shall see, for
N > 2, the Faddeev–Popov operator of the maximal Abelian gauge possesses an additional
term which is absent in the case of SU(2). This term will induce modifications on the behavior
of the correlation functions. For N = 2, only the diagonal components of the gluon propagator
are affected by the restriction to the Gribov region. However, for N > 2, the off-diagonal
components are also affected through a term proportional to (N − 2). This feature might raise
interest from the lattice community. A numerical study of the gluon propagator in the case of
SU(3) is, to our knowledge, still lacking.

The paper is organized as follows. In section 1, the Faddeev–Popov quantization in the
maximal Abelian gauge is shortly reviewed. In section 2, we introduce the Gribov region �

and we establish some of its properties. This region turns out to be convex, unbounded
in all diagonal directions in field space and bounded along the off-diagonal directions.
Section 3 is devoted to the proof of a useful statement which ensures that for any field
configuration belonging to the Gribov region � and located near its boundary, there is a
Gribov copy, close to the boundary of �, however located outside of �. This statement,
originally proven by Gribov in the case of the Landau gauge [1], provides us a support for
restricting the domain of integration in the functional integral to the region �. The effective
implementation of such a restriction will be the main subject of section 4. In section 5, in
order to go beyond Gribov’s quadratic approximation, we introduce the horizon function.
Although in the case of SU(N) several possible candidates for the horizon function can be
written down, only one term turns out to be selected by the requirements of being localizable,
of reproducing the horizon function already introduced in the case of SU(2) and of coinciding
with the expression obtained from Gribov’s no pole condition [1]. In section 6, a local action
containing a suitable set of dimension 2 operators chosen in such a way as to preserve the
symmetry content of the theory is presented. The resulting gluon and ghost propagators will
be worked out. Finally, in section 7, we collect our conclusion and discuss some perspectives.

2. The maximal Abelian gauge

2.1. Some useful definitions

In order to introduce the maximal Abelian gauge-fixing condition, one makes use of the
following decomposition for the gauge field Aμ(x):

Aμ = AA
μT A = Aa

μT a + Ai
μT i, (1)

where TA are the (N2 − 1) generators of SU(N), while Ta and Ti stand, respectively, for
the off-diagonal and diagonal generators. There are N(N − 1) off-diagonal generators and
(N − 1) diagonal ones. The diagonal generators give rise to the Abelian subgroup U(1)N−1,
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which is known as the Cartan subgroup. Here, we have adopted three sets of indices, namely

A,B,C,D,E, . . . ∈ {1, . . . , (N2 − 1)},
a, b, c, d, e, . . . ∈ {1, . . . , N(N − 1)}, (2)

i, j, k, l, . . . ∈ {1, . . . , (N − 1)},
where the capital Latin indices {A,B,C,D, . . .} are the usual SU(N) group indices. The
off-diagonal indices are represented by {a, b, c, d, e, . . .} and run from 1 to N(N − 1), while
the diagonal indices are given by {i, j, k, l, . . .} running from 1 to (N − 1). The commutation
relations between the generators T A, T a, T i are given by

[T A, T B] = if ABCT C,

[T a, T b] = if abcT c + if abiT i,

[T a, T i] = −if abiT b,

[T i, T j ] = 0,

(3)

where f ABC denote the structure constants of SU(N). From the last equation of (3) we conclude
that f aij = f ijk = 0. The remaining nonvanishing structure constants f abc and f abi are totally
antisymmetric by the exchange of indices and obey the following identities3:

0 = f abif bcj + f abjf bic,

0 = f abcf cdi + f adcf cib + f aicf cbd , (4)

0 = f abcf cde + f abif ide + f adcf ceb + f adif ieb + f aecf cbd + f aeif ibd .

The off-diagonal and diagonal components of the gauge field transform under an infinitesimal
gauge transformation as

δAa
μ = −(

Dab
μ ωb + gf abcAb

μωc + gf abiAb
μωi

)
, (5)

δAi
μ = −(

∂μωi + gf abiAa
μωb

)
. (6)

Here, Dab
μ is the covariant derivative with respect to the diagonal components

Dab
μ = δab∂μ − gf abiAi

μ, (7)

and (ωa, ωi) are the gauge parameters. The Yang–Mills action can also be written in terms of
these diagonal and off-diagonal components as

SYM = 1

4

∫
d4x

(
Fa

μνF
a
μν + F i

μνF
i
μν

)
, (8)

with

Fa
μν = Dab

μ Ab
ν − Dab

ν Ab
μ + gf abcAb

μAc
ν,

F i
μν = ∂μAi

ν − ∂νA
i
μ + gf abiAa

μAb
ν.

(9)

3 These identities follow from the Jacobi identity

f ABCf CDE + f ADCf CEB + f AECf CBD = 0.

4



J. Phys. A: Math. Theor. 43 (2010) 245402 M A L Capri et al

2.2. Describing the maximal Abelian gauge condition

Since we have split the gauge field Aμ(x) into two components, a diagonal (or Abelian) one
represented by Ai

μ(x) and an off-diagonal one given by Aa
μ(x), we can now choose to fix the

gauge invariance of expression (8) by imposing a gauge condition on each component of the
gauge field. For the off-diagonal components Aa

μ(x), one imposes the condition

Dab
μ Ab

μ = ∂μAa
μ − gf abiAi

μAb
μ = 0, (10)

while for the diagonal ones one requires

∂μAi
μ = 0. (11)

Note the nonlinearity in the gauge fixing of the off-diagonal components, equation (10). This
particular choice of gauge fixing is supported by the interesting property that it follows from
the requirement that the auxiliary functional

F[A] =
∫

d4x Aa
μAa

μ (12)

is stationary with respect to the local gauge transformations (6). The nonlinear condition (10)
still allows for a remaining local U(1)N−1 invariance which is removed by imposing a gauge
condition on the diagonal components, for which a Landau-type condition is usually chosen,
as expressed by equation (11). Conditions (10) and (11) are referred to as the maximal Abelian
gauge.

For further use, let us also display here conditions (10) and (11) in momentum space. By
performing a Fourier transformation, one straightforwardly obtains

kμAa
μ(k) = igf abi

∫
d4p

(2π)4
Ai

μ(k − p)Ab
μ(p),

kμAi
μ(k) = 0.

(13)

2.3. The Faddeev–Popov quantization

The gauge-fixing term, which naturally arises from the Faddeev–Popov quantization method,
assumes the following form in the case of the maximal Abelian gauge:

SMAG = s

∫
d4x

(
c̄a Dab

μ Ab
μ + c̄i ∂μAi

μ

)
=

∫
d4x

[
iba Dab

μ Ab
μ − c̄aMabcb − gf abc

(
Dad

μ Ad
μ

)
c̄bcc − gf abi

(
Dac

μ Ac
μ

)
c̄bci

+ ibi ∂μAi
μ + c̄i ∂μ

(
∂μci + gf abiAa

μcb
)]

. (14)

In this expression, the auxiliary fields (ba, bi) are the Lagrange multipliers enforcing the
maximal Abelian gauge-fixing conditions (10), (11); (ca, ci) are the Faddeev–Popov ghost
fields, while (c̄a, c̄i ) are the anti-ghost fields; Mab stands for the Faddeev–Popov operator,
given by

Mab = −Dac
μ Dcb

μ − gf acdAc
μDdb

μ − g2f acif bdiAc
μAd

μ ; (15)

and finally, s is the nilpotent BRST operator acting on the fields as

sAa
μ = −(

Dab
μ cb + gf abcAb

μcc + gf abiAb
μci

)
, sAi

μ = −(
∂μci + gf abiAa

μcb
)
,

sca = gf abicbci +
g

2
f abccbcc, sci = g

2
f abicacb,

sc̄a = iba, sc̄i = ibi,

sba = 0, sbi = 0.

(16)
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The nonlinearity of the gauge fixing implies that an additional self-interacting ghost term
is required in order to ensure renormalizability [42–45]. This additional term is defined as
follows:

Sα = −α

2
s

∫
d4x

(
ic̄aba − gf abi c̄a c̄bci − g

2
f abccac̄bc̄c

)
= α

2

∫
d4x

(
baba + 2igf abibac̄bci + igf abcbac̄bcc +

g2

2
f abif cdi c̄a c̄bcccd

+
g2

2
f abcf adi c̄bc̄ccdci +

g2

4
f abcf adec̄bc̄ccdce

)
. (17)

Note that this term is proportional to a gauge parameter α and thus the original gauge fixing is
recovered when α is set to zero. However, the limit α → 0 has to be taken after the removal
of the ultraviolet divergences. In fact, some of the terms proportional to α would reappear due
to radiative corrections, even if α = 0 [42–45]. Moreover, the action

S = SYM + SMAG + Sα (18)

is multiplicatively renormalizable to all orders of the perturbation theory [42–45].
To conclude this section, let us make a few remarks on the partition function of the theory,

namely

Z =
∫

DAaDAiDbaDbiDcaDc̄aDciDc̄i e−S[A,b,c,c̄], (19)

where S is given by (18). Now, taking the limit α → 0 and integrating over the Lagrange
multipliers (ba, bi), one obtains

Z =
∫

DAaDAiDcaDc̄aDciDc̄i δ
(
Dab

μ Ab
μ

)
δ
(
∂μAi

μ

)
e−SYM+

∫
d4x[c̄aMabcb−c̄i ∂μ(∂μci+gf abiAa

μcb)].

(20)

To deal with the diagonal ghosts (ci, c̄i ), we perform the following change of variables:

ci → ξ i = ci + gf abi ∂μ

∂2
Aa

μcb, c̄i → ξ̄ i = c̄i , (21)

with all other fields unchanged. Being linear in (ci, c̄i ), this change of variables leads to a
Jacobian which is field independent. Thus, we can verify that

c̄i ∂μ

(
∂μci + gf abiAa

μcb
) → ξ̄ i∂2ξ i . (22)

Therefore, for the partition function we have

Z =
(∫

Dξ iDξ̄ i e− ∫
d4x ξ̄ i ∂2ξ i

)∫
DAaDAiDcaDc̄a δ

(
Dab

μ Ab
μ

)
δ
(
∂μAi

μ

)
e−SYM+

∫
d4x c̄aMabcb

= N
∫

DAaDAiDcaDc̄a δ
(
Dab

μ Ab
μ

)
δ
(
∂μAi

μ

)
e−SYM+

∫
d4x c̄aMabcb

, (23)

with N being an irrelevant constant factor. Finally, integrating over the off-diagonal ghosts
(ca, c̄a), it follows that

Z = N
∫

DAaDAi δ
(
Dab

μ Ab
μ

)
δ
(
∂μAi

μ

)
det(Mab) e−SYM . (24)

As we shall see later, expression (24) will be taken as the starting point for the implementation
of the restriction of the domain of integration to the Gribov region �.
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3. The Gribov region Ω and some of its properties

3.1. On the existence of Gribov copies in the maximal Abelian gauge

Before entering into the analysis of the Gribov region �, let us briefly discuss the existence of
copies in the maximal Abelian gauge. In order to deal with this issue, let us first take a field
configuration

(
Aa

μ,Ai
μ

)
fulfilling the gauge conditions (10), (11). Then, we can ask if there

exists a gauge transformed configuration,
(
Ãa

μ, Ãi
μ

)
, which fulfills the same gauge conditions

as
(
Aa

μ,Ai
μ

)
, i.e.

Dab
μ (Ã)Ãb

μ = 0 ∂μÃi
μ = 0. (25)

In the case of infinitesimal gauge transformations, this question can be answered in the
affirmative if the following conditions can be verified for some value of the gauge parameters
(ωa, ωi):

Mab(A)ωb = 0, −∂μ

(
∂μωi + gf abiAa

μωb
) = 0, (26)

where Mab is the Faddeev–Popov operator given by (15). Note that the diagonal parameter
ωi(x) is completely determined in terms of the off-diagonal quantities ωa(x) and Aa

μ(x). In
fact, from equations (26), it follows

ωi = −gf abi 1

∂2
∂μ

(
Aa

μωb
)
. (27)

Thus, we can say that the condition for the existence of equivalent field configurations, or
Gribov copies, relies on the existence of zero modes of the Faddeev–Popov operator Mab(A).
Explicit examples of such zero modes can be found in [31].

3.2. Determining the Gribov region � in the maximal Abelian gauge

The so-called Gribov region � in the maximal Abelian gauge can be defined in a way similar
to the case of the Landau gauge [7, 8]. More precisely, the region � consists of all field
configurations which are relative minima of the auxiliary functional (12), which is the same
as to require that Mab has to be positive, namely

δ2F[A] = 2
∫

d4x ωaMab(A)ωb > 0 ⇒ Mab(A) > 0. (28)

Thus, we can write

� = {
Aa

μ,Ai
μ

∣∣Dab
μ Ab

μ = 0, ∂μAi
μ = 0,Mab(A) > 0

}
. (29)

The boundary ∂� of � is the region in field space where Mab achieve its first vanishing
eigenvalue. This boundary is often called the first Gribov horizon or simply the Gribov
horizon. Note also that for very small values of the coupling constant g, corresponding to the
perturbative regime, the Faddeev–Popov operator behaves essentially like the four-dimensional
Laplacian, Mab ≈ −∂2δab, exhibiting in this case only positive eigenvalues. This means that
the perturbation theory is contained within the Gribov region �.

3.3. Some properties of the Gribov region

In equation (29), we defined the region � as the set of fields fulfilling the maximal Abelian
gauge conditions and for which the operator Mab is positive definite. Let us now establish
some properties of this region. Let us first take a look at the Faddeev–Popov operator Mab,
which can be written as

Mab = Oab
1 − Oab

2 − Oab
3 , (30)

7
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where

Oab
1 = −Dac

μ Dcd
μ , Oab

2 = gf acdAc
μDdb

μ , Oab
3 = g2f acif bdiAc

μAd
μ. (31)

As pointed out in [31, 47], the operators Oab
1 and Oab

3 are positive definite. We can easily
show this by the following elementary calculation:

〈ψ |O1|ψ〉 = −
∫

d4x(ψa)†Dac
μ Dcb

μ ψb =
∫

d4x
(
Dac

μ ψc
)†

Dab
μ ψb = ∥∥Dab

μ ψb
∥∥2 � 0, (32)

〈ψ |O3|ψ〉 =
∫

d4x(ψa)†g2f acif bdiAc
μAd

μψb

=
∫

d4x
(
gf aciAc

μψa
)†(

gf bdiAd
μψb

) = ∥∥gf abiAb
μψa

∥∥2 � 0. (33)

Concerning the operator Oab
2 , we note that its trace in color space vanishes, i.e.

trO2 ≡ Oaa
2 = gf acdAc

μDda
μ = gf acdAc

μ

(
δda∂μ − gf daiAi

μ

)
= −gf aabAb

μ∂μ − g2 f abcf abi︸ ︷︷ ︸
=0

Ac
μAi

μ = 0. (34)

As a consequence, Oab
2 has both positive and negative eigenvalues. As we shall see in following

sections, this feature can be used to establish a few properties of �.

3.3.1. The region � is unbounded in all diagonal directions. To prove this statement
it is sufficient to observe that the purely diagonal field configuration

(
0, Ai

μ

)
with Ai

μ(x)

transverse, ∂μAi
μ = 0, fulfills the maximal Abelian gauge condition. Moreover, for this kind

of configuration, the Faddeev–Popov operator Mab reduces to the covariant Laplacian

Mab(0, Ai) = −Dac
μ (A)Dcb

μ (A), (35)

which is always positive for an arbitrary choice of the transverse diagonal configuration
Ai

μ(x). We see thus that one can freely move along the diagonal directions in field space.
The Faddeev–Popov operator will never become negative, meaning that � is unbounded in
the diagonal directions.

3.3.2. The region � is bounded in all off-diagonal directions. To establish this features,
we observe that if

(
Ba

μ, Bi
μ

)
is a field configuration fulfilling the maximal Abelian conditions,

Dab
μ Bb

μ = 0, ∂μBi
μ = 0, then the rescaled configuration

(
λBa

μ, Bi
μ

)
, where λ is an arbitrary

positive constant λ, obeys the same conditions, i.e.

Dab
μ

(
λBb

μ

) = λDab
μ Bb

μ = 0. (36)

Now, let
(
Aa

μ,Ai
μ

)
be a configuration which belongs to �, namely

〈ψ |M(Aa,Ai)|ψ〉 = 〈ψ |O1|ψ〉 − 〈ψ |O2|ψ〉 − 〈ψ |O3|ψ〉 > 0, (37)

and let us evaluate the quantity 〈ψ |M|ψ〉 for the rescaled configuration
(
λAa

μ,Ai
μ

)
. From

expressions (31) one obtains

〈ψ |M(λAa,Ai)|ψ〉 = 〈ψ |O1|ψ〉 − λ〈ψ |O2|ψ〉 − λ2〈ψ |O3|ψ〉 > 0. (38)

Two cases have to be considered. (i) When 0 � λ � 1, the quantity above is always
positive since 〈ψ |O1|ψ〉 > 0 for every configuration and

(
Aa

μ,Ai
μ

)
belongs to the Gribov

region by the hypothesis, see equation (37). (ii) When λ is larger than 1, we have to pay

8
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attention to the value of 〈ψ |O2|ψ〉. If this quantity is positive, we just need to take λ as large
as we want and certainly a zero mode will be achieved. Note in fact that the third term in
equation (38) is always positive, 〈ψ |O3|ψ〉 > 0. If 〈ψ |O2|ψ〉 turns out to be negative, it would
be sufficient to observe that the contribution coming from 〈ψ |O2|ψ〉 is of first order in λ, while
the contribution coming from 〈ψ |O3|ψ〉, which is always positive, is of the order λ2. Thus,
we conclude that even if 〈ψ |O2|ψ〉 is negative, we shall still achieve a zero mode of Mab for
λ sufficiently large. In other words, moving along the off-diagonal directions parameterized
by the rescaled configuration

(
λAa

μ,Ai
μ

)
, with

(
Aa

μ,Ai
μ

)
belonging to the Gribov region �,

one always encounters a boundary ∂�, i.e. the horizon, where the first vanishing eigenvalue
of the Faddeev–Popov operator appears. Beyond ∂�, the operator Mab ceases to be positive
definite.

Before ending this section, it is worth discussing the case of a particular field configuration4

which can be handled by making use of the charge conjugation invariance displayed by the
maximal Abelian gauge; see [32, 43, 44, 47–49] for a detailed account on this symmetry. This
field configuration would correspond to the case in which the eigenvalues of the operators
O2 and O3 both vanish. If this particular configuration obeys the maximal Abelian gauge
conditions (10), (11) and allows for an arbitrary rescaling of the off-diagonal components of
the gauge field, then it would give rise to off-diagonal unbounded directions in field space.
Luckily, it turns out that this kind of configuration can be excluded by invoking the charge
conjugation symmetry. In order to illustrate this issue, let us consider in detail the simpler
example of SU(2). In this case, the operator O2 is absent and the eigenvalues of Oab

3 (A) are
given by the characteristic equation∥∥∥∥∥g2A2

μA2
μ − ε3 −g2A1

μA2
μ

−g2A1
μA2

μ g2A1
μA1

μ − ε3

∥∥∥∥∥ = (
g2A2

μA2
μ − ε3

)(
g2A1

νA
1
ν − ε3

) − g4A1
μA2

μA1
νA

2
ν = 0.

(39)

For configurations of the form

A1
μ = λA2

μ, (40)

with arbitrary real λ, it is easily seen that the characteristic equation displays in fact a zero
eigenvalue. Furthermore, this configuration can be made to satisfy the maximal Abelian gauge
conditions in a nontrivial way. It would appear then that by choosing λ as large as we wish
we could make the Gribov region � unbounded along these particular off-diagonal directions.
However, it turns out that the Yang–Mills theory in the maximal Abelian gauge possesses a
charge conjugation invariance, which is also enjoyed by the horizon term implementing the
restriction to the region � [32, 43, 44, 47–49]. This symmetry is defined by

A1
μ → A1

μ, A2
μ → −A2

μ, A3
μ → −A3

μ, (41)

and is clearly not obeyed by the configuration (40). As such, these configurations can be
excluded from the field space relevant for the Gribov region �. Although the general case of
SU(N) looks more involved, we expect that a similar reasoning applies as well. Needless to
say, the charge conjugation can also be introduced for SU(N).

3.3.3. The convexity of the region �. Let us now discuss the issue of the convexity
of the region �. Due to the nonlinearity of the gauge conditions, this property will be
established for field configurations having the same diagonal components. Namely, consider
two configurations

(
Ba

μ,Ai
μ

)
and

(
Ca

μ,Ai
μ

)
which obey the gauge conditions

Dab
μ (A)Bb

μ = 0, Dab
μ (A)Cb

μ = 0, ∂μAi
μ = 0, (42)

4 We are grateful to Nicolas Wschebor for having pointed out to us this possibility.
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and belong to the Gribov region, i.e.

Mab(B,A) > 0, Mab(C,A) > 0. (43)

In order to establish the convexity of the region �, we should show that the field configuration(
Ea

μ,Ai
μ

)
defined by

Ea
μ = αBa

μ + (1 − α)Ca
μ, 0 � α � 1, (44)

belongs to �, i.e. Mab(E,A) > 0. In fact, one can verify straightforwardly that

Mab(E,A) = αMab(B,A) + (1 − α)Mab(C,A) + α(1 − α)Oab
3 (B − C). (45)

Since Oab
3 is positive definite, as already mentioned, and since both

(
Ba

μ,Ai
μ

)
and

(
Ca

μ,Ai
μ

)
belong to �, we finally conclude that

Mab(E,A) > 0, (46)

showing that
(
Ea

μ,Ai
μ

)
belongs to � as well. This proves the convexity of �.

4. Gribov’s statement about field configurations close to the horizon

In [1], Gribov proved, in the case of the Landau gauge, that for any field configuration located
within the Gribov region and close to the Gribov horizon, there exists a nearby copy located
on the other side of the horizon, i.e. outside of the Gribov region. This result was extended in
[32] to the maximal Abelian gauge in SU(2). Here we provide the necessary generalization
to SU(N). First, let us consider a field configuration

(
Ca

μ, Ci
μ

)
lying on the horizon, that is,

Dab
μ (C)Cb

μ = 0, ∂μCi
μ = 0 (47)

and

Mab(C)φb
0 = 0, (48)

where φa
0 (x) stands for a normalizable zero mode of the Faddeev–Popov operator Mab(C).

For later purposes, it turns out to be useful to introduce the diagonal components φi
0(x) defined

according to the second equation of (26) as

φi
0 = −gf abi 1

∂2
∂μ

(
Ca

μφb
0

)
. (49)

Let
(
Aa

μ,Ai
μ

)
be a field configuration belonging to the Gribov region � and located close to

the horizon ∂�. For such a configuration, we can write

Aa
μ = Ca

μ + aa
μ, Ai

μ = Ci
μ + ai

μ, (50)

where
(
aa

μ, ai
μ

)
are treated as small perturbative components. As

(
Aa

μ,Ai
μ

)
obeys the gauge

conditions (10), (11), from equation (47) it follows that

Dab
μ (C)ab

μ − gf abiai
μCb

μ = 0, ∂μai
μ = 0. (51)

The eigenvalue of the Faddeev–Popov operator corresponding to the field configuration(
Aa

μ,Ai
μ

)
is easily determined at first order in the small components

(
aa

μ, ai
μ

)
by using the

standard perturbation theory of quantum mechanics, yielding

ε(A) = ε(C) +
∫

d4x φa
0

[
2gf abiai

μDbc
μ (C)φc

0 − gf acdac
μDdb

μ (C)φb
0

+ g2f acdf dbiai
μCc

μφb
0 − g2f acif bdi

(
Cc

μad
μ + ac

μCd
μ

)
φb

0

]
. (52)

The first term on the rhs of (52) vanishes because
(
Ca

μ, Ci
μ

)
lies on the Gribov horizon ∂�.

10
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We can now proceed as in [1, 32] and introduce a third configuration
(
Ãa

μ, Ãi
μ

)
, still

located close to the Gribov horizon, defined by

Ãa
μ = Ca

μ + ãa
μ, Ãi

μ = Ci
μ + ãi

μ, (53)

where

ãa
μ = aa

μ − (
Dab

μ (C)φb
0 + gf abcCb

μφc
0 + gf abiCb

μφi
0

)
,

ãi
μ = ai

μ − (
∂μφi

0 + gf abiCa
μφb

0

)
(54)

are small as compared to
(
Ca

μ, Ci
μ

)
. It is easy to verify that this new field configuration was

constructed in such a way that it fulfills the maximal Abelian gauge conditions

Dab
μ (Ã)Ãb

μ = 0, ∂μÃi
μ = 0. (55)

Therefore, we can ask ourselves if
(
Ãa

μ, Ãi
μ

)
is a Gribov copy of

(
Aa

μ,Ai
μ

)
, i.e. if these two field

configurations can be connected by a gauge transformation. In order to answer this question
we shall repeat the argument of [1, 32], amounting to construct such a gauge transformation
in an iterative way. Let us suppose thus that it is possible to connect the two configurations by
a gauge transformation, so that

Ãa
μ = Aa

μ − (
Dab

μ ωb + gf abcAb
μωc + gf abiAb

μωi
)

− g

2
f abcωb

(
Dcd

μ ωd + gf cdeAd
μωe + gf cdiAd

μωi
)

− g

2
f abiωb

(
∂μωi + gf cdiAc

μωd
)

+
g

2
f abiωi

(
Dbc

μ ωc + gf bcdAc
μωd + gf bcjAc

μωj
)

+ O(ω3),

Ãi
μ = Ai

μ − (
∂μωi + gf abiAa

μωb
)

− g

2
f abiωa

(
Dbc

μ ωc + gf bcdAc
μωd + gf bcjAc

μωj
)

+ O(ω3), (56)

where, according to [1], the gauge transformation has been considered till the second order5

in the gauge parameters ωi, ωa . From the maximal Abelian conditions, it follows that

Mab(A)ωb + Dab
μ (A)

[
−g

2
f bcdωc

(
Dde

μ ωe + gf def Ae
μωf + gf deiAe

μωi
)

− g

2
f bciωc

(
∂μωi + gf deiAd

μce
)

+
g

2
f bciωi

(
Dcd

μ ωd + gf cdeAd
μωe + gf cdjAd

μωj
)]

+
g2

2
f abif cdiAb

μωc
(
Dde

μ ωe + gf def Ae
μωf + gf dejAe

μωj
)

− gf abi
(
∂μωi + gf cdiAc

μωd
)(

Dbe
μ ωe + gf bef Ae

μωf + gf bejAe
μωj

) = 0, (57)

∂μ

[
∂μωi + gf abiAa

μωb +
g

2
f abiωa

(
Dbc

μ ωc + gf bcdAc
μωd + gf bcjAc

μωj
)] = 0. (58)

5 Note that if we had taken only the first-order gauge transformations, we would obtain

Ãa
μ = Aa

μ − (Dab
μ ωb + gf abcAb

μωc + gf abiAb
μωi), Ãi

μ = Ai
μ − (∂μωi + gf abiAa

μωb).

Then, applying the maximal Abelian gauge conditions we would obtain the following equations:

Mab(A)ωb = 0, ∂μ(∂μωi + gf abiAa
μωb) = 0,

which have no solutions since, by hypothesis, (Aa
μ,Ai

μ) is not located on the horizon ∂�.
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The next step is to express (ωa, ωi) in terms of
(
φa

0 , φi
0

)
. Let us start by writing

ωa = φa
0 + ηa

0 , ωi = φi
0 + ηi

0, (59)

with (ηa, ηi) small when compared to
(
φa

0 , φi
0

)
. Equation (57) gives thus the following

condition:

∂2ηa = Pa(C, a, φ0) + Qab(C)ηb, (60)

with Pa and Qab given by

Pa = 2gf abiai
μDbc

μ (C)φc
0 − gf acdac

μDab
μ (C)φb

0 + g2f acdf dbiai
μCc

μφb
0

− g2f acif bdi
(
Cc

μad
μ + ac

μCd
μ

)
φb

0 + Dab
μ (C)

[
−g

2
f bcdφc

0

(
Dde

μ (C)φe
0

+ gf def Ce
μφ

f

0 + gf deiCe
μφi

0

) − g

2
f bciφc

0

(
∂μφi

0 + gf deiCd
μφe

0

)
+

g

2
f bci

(
Dcd

μ (C)φd
0 + gf cdeCd

μφe
0 + gf cdjCd

μφ
j

0

)]
+

g2

2
f abif cdiCb

μφc
0

(
Dde

μ (C)φe
0 + gf def Ce

μφ
f

0 + gf dejCe
μφ

j

0

)
− gf abi

(
∂μφi

0 + gf cdiCc
μφd

0

)(
Dbe

μ (C)φe
0 + gf bef Ce

μφ
f

0 + gf bejCe
μφ

j

0

)
, (61)

Qab = 2gf abiCi
μ∂μ − gf abcCc

μDdb
μ − g2f acif cbjCi

μCj
μ − g2f acif bdiCc

μCd
μ. (62)

We notice now that equation (60) can be solved for ηa(x) in an iterative way:

ηa = 1

∂2
Pa +

1

∂2
Qab 1

∂2
Pb + · · · , (63)

allowing us to obtain a recursive expression for the parameters (ωa, ωi) as well as for the
gauge transformations (56) in terms of

(
φa

0 , φi
0

)
. We have shown thus that the configuration(

Ãa
μ, Ãi

μ

)
is indeed a Gribov copy of

(
Aa

μ,Ai
μ

)
. Furthermore, equation (60) can be used to

establish another relevant property. Recalling that Mab(C)φb
0 = 0 and that Mab is Hermitian,

we have ∫
d4x φa

0Mab(C)ηb = 0. (64)

Therefore, from (60), it follows that∫
d4x φa

0

{
2gf abiai

μDbc
μ (C)φc

0 − gf acdac
μDab

μ (C)φb
0 + g2f acdf dbiai

μCc
μφb

0

− g2f acif bdi
(
Cc

μad
μ + ac

μCd
μ

)
φb

0 + Dab
μ (C)

[
−g

2
f bcdφc

0

(
Dde

μ (C)φe
0

+ gf def Ce
μφ

f

0 + gf deiCe
μφi

0

) − g

2
f bciφc

0

(
∂μφi

0 + gf deiCd
μφe

0

)
+

g

2
f bci

(
Dcd

μ (C)φd
0 + gf cdeCd

μφe
0 + gf cdjCd

μφ
j

0

)]
+

g2

2
f abif cdiCb

μφc
0

(
Dde

μ (C)φe
0 + gf def Ce

μφ
f

0 + gf dejCe
μφ

j

0

)
− gf abi

(
∂μφi

0 + gf cdiCc
μφd

0

)(
Dbe

μ (C)φe
0 + gf bef Ce

μφ
f

0 + gf bejCe
μφ

j

0

)} = 0. (65)
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Moreover, the eigenvalue of the Faddeev–Popov operator corresponding to the configuration(
Ãa

μ, Ãi
μ

)
can be obtained in the same way as before for

(
Aa

μ,Ai
μ

)
, amounting in fact to replace

aμ by ãμ. Thus,

ε(Ã) =
∫

d4x φa
0

[
2gf abi ãi

μDbc
μ (C)φc

0 − gf acd ãc
μDdb

μ (C)φb
0

+ g2f acdf dbi ãi
μCc

μφb
0 − g2f acif bdi

(
Cc

μãd
μ + ãc

μCd
μ

)
φb

0

]
. (66)

Finally, from equations (54), (65) and (66), we obtain

ε(A) = −ε(Ã). (67)

Since ε(A) > 0 by hypothesis, it follows that ε(Ã) = −ε(A) < 0, showing that the Gribov
copy

(
Ãa

μ, Ãi
μ

)
is in fact located outside of �.

5. Restriction of the domain of integration to the Gribov region Ω

As we have seen before, field configurations located inside � and close to the boundary ∂�

have copies outside of �. Therefore, restricting the domain of integration in the Feynman
integral to the Gribov region allows us to get rid of a certain amount of copies6. To implement
this restriction we shall follow [1, 32] and introduce in the partition function of the theory,
equation (24), the factor V(�) which formally constrains the domain of integration to the
region �:

Z =
∫

�

dμ e−SYM =
∫

dμ e−SYM V(�), (68)

where dμ is the Faddeev–Popov functional measure given in equation (24):

dμ = DAoffDAdiag δ(D · Aoff)δ(∂ · Adiag)(detM). (69)

In order to obtain an explicit expression for V(�), we make use of the so-called no-pole
condition [1], which is a condition on the connected two-point function of the off-diagonal
Faddeev–Popov ghost fields. As pointed out in [1], see also [50] for a pedagogical introduction,
the no-pole condition stems from the positivity of the Faddeev–Popov operator, Mab > 0,
within the Gribov region �, according to equation (29). As a consequence, within �, the
operator Mab is invertible. Moreover, its inverse (Mab)−1 which is nothing but the connected
two-point off-diagonal ghost function evaluated in an external gauge field background

(Mab(x, y;A))−1 =
∫
DcoffDc̄off c̄a(x)ca(y) e

∫
d4z c̄b(z)Mbc(z) cc(z)∫

DcoffDc̄off e
∫

d4z c̄b(z)Mbc(z) cc(z)
(70)

is positive as well within �, i.e. (Mab)−1 > 0. Following [1], the next step to achieve the
factor V(�) is that of considering the quantity

G(k;A) =
∫

d4x d4y G(x, y;A) eik(x−y), (71)

where G(x, y;A) stands for the trace, in color space, of (Mab)−1, namely

G(x, y;A) = Tr(Mab(x, y;A))−1

N(N − 1)

= 1

N(N − 1)

∫
DcoffDc̄off c̄a(x)ca(y) e

∫
d4z c̄b(z)Mbc(z) cc(z)∫

DcoffDc̄off e
∫

d4z c̄b(z)Mbc(z) cc(z)
. (72)

6 Nowadays, it is known that the restriction to � does not enable us to get rid of all copies. As already remarked, a
further restriction to a smaller region, known as the fundamental modular region, should be implemented [2]. Though,
till now, this seems to be beyond our present capabilities.
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Parametrizing thus G(k;A) as in [1, 32]

G(k;A) ≈ 1

k2

1

1 − σ(k;A)
+
J
k4

, (73)

where J is constant, the no-pole condition can be stated as [1]

σ(k;A) < 1. (74)

From this condition, it follows that the off-diagonal ghost propagator has no poles for any
finite value of the momentum k, so it cannot change sign by varying k. It will always remain
positive, meaning that the Gribov region � will never be crossed. The only allowed pole
is at k = 0, where expression (73) becomes singular, meaning that we are approaching the
boundary ∂� where (Mab)−1 is in fact singular, due to the zero modes of Mab. Moreover,
taking into account that σ(k;A) is a decreasing function of the momentum k [1], for the final
form of the no-pole condition we might take [1]

σ(0;A) < 1, (75)

which is very suitable for explicit calculations. Therefore, the factor V(�) implementing the
restriction of the domain of integration in the functional integral to the region � is

V(�) = θ(1 − σ(0;A)), (76)

where θ stands for the step function. Consequently, for the partition function we can write

Z =
∫

�

dμ e−SYM =
∫

dμ e−SYM θ(1 − σ(0, A)). (77)

5.1. Evaluation of V(�)

Let us face now the characterization of the factor V(�). To that purpose, we start with
expression (72) and evaluate G(x, y;A) order-by-order in the perturbation theory. Performing
the calculation until the third order7, we obtain8

G(x, y;A) = G0(x − y) − g2
∫

d4z
[
NAi

μ(z)Ai
μ(z) − Aa

μ(z)Aa
μ(z)

]
G0(z − y)G0(x − z)

− g2
∫

d4z1 d4z2
[
4NAi

μ(z1)A
i
ν(z2) + (N − 2)Aa

μ(z1)A
a
ν(z2)

]
× ∂z1

μ G0(x − z1)G0(z2 − y) ∂z2
ν G0(z1 − z2)

+
g3

N(N − 1)

∫
d4z1 d4z2 f abcf bdef adiAc

μ(z1)A
e
ν(z2)A

i
ν(z2)

[(
∂z1
μ G0(x − z1)

)
× G0(z2 − y)G0(z1 − z2) + G0(x − z2)G0(z1 − y) ∂z1

μ G0(z2 − z1)
]

− g3

N(N − 1)

∫
d4z1 d4z2 d4z3

(
8f abif bcjf cakAi

μ(z1)A
j
ν(z2)A

k
σ (z3)

+ 4f abif bdjf dacAi
μ(z1)A

j
ν(z2)A

c
σ (z3) + 4f abif bdcf dajAi

μ(z1)A
c
ν(z2)A

j
σ (z3)

+ 4f abcf bdif dajAc
μ(z1)A

i
ν(z2)A

j
σ (z3) + 2f abif bdcf daeAi

μ(z1)A
c
ν(z2)A

e
σ (z3)

+ 2f abcf bdif daeAc
μ(z1)A

i
ν(z2)A

e
σ (z3) + 2f abcf bdef daiAc

μ(z1)A
e
ν(z2)A

i
σ (z3)

+ f abcf bdef daf Ac
μ(z1)A

e
ν(z2)A

f
σ (z3)

)
× [(

∂z1
μ G0(x − z1)

)
G0(z2 − y)

(
∂z3
σ G0(z1 − z3)

)
∂z2
ν G0(z3 − z2)

]
, (78)

7 In [1, 32] the calculations were performed only till the second order, as this is sufficient to determine how the
restriction to � affects the form of the tree-level propagators. Furthermore, a third-order calculation will be needed
in order to characterize the horizon function, as recently done in [51] in the case of the Landau gauge.
8 More details of this lengthy calculation can be found in the appendix.
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where

G0(x − y) =
∫

d4q

(2π)4

1

q2
e−iq(x−y). (79)

In momentum space we can write

G(k;A) =
∫

d4x d4y G(x, y;A) eik(x−y)

= 1

k2
− g2

k4

∫
d4q

(2π)4

(
Ai

μ(q)Ai
μ(−q)

N − 1
− Aa

μ(q)Aa
μ(−q)

N(N − 1)

)
+ g2

∫
d4q

(2π)4

kμ(k − q)ν

k4(k − q)2

(
4

(N − 1)
Ai

μ(q)Ai
ν(−q) +

N − 2

N(N − 1)
Aa

μ(q)Aa
ν(−q)

)
+

g3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

(
ikμ

k4(p + k)2
+

i(k − p)μ

k4(k − p)2

)
f abcf bdef adiAc

μ(−p)

× Ae
ν(−q)Ai

ν(p + q) +
g3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

ikσ (k − p)μ(k − p − q)ν

k4(k − p)2(k − p − q)2

× (
8f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

σ (p + q)

+ 4f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
σ (p + q)

+ 4f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
σ (p + q)

+ 4f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
σ (p + q)

+ 2f abif bdcf daeAi
μ(−p)Ac

ν(−q)Ae
σ (p + q)

+ 2f abcf bdif daeAc
μ(−p)Ai

ν(−q)Ae
σ (p + q)

+ 2f abcf bdef daiAc
μ(−p)Ae

ν(−q)Ai
σ (p + q)

+ f abcf bdef daf Ac
μ(−p)Ae

ν(−q)Af
σ (p + q)

)
. (80)

According to equation (73), the expression above can be rewritten as

G(k;A) = 1

k2
(1 + σ(k;A)) +

J
k4

, (81)

where the form factor σ(k;A) and J are given by

σ(k;A) = g2
∫

d4q

(2π)4

kμ(k − q)ν

k2(k − q)2

(
4

(N − 1)
Ai

μ(q)Ai
ν(−q) +

N − 2

N(N − 1)
Aa

μ(q)Aa
ν(−q)

)
+

g3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

(
ikμ

k2(p + k)2
+

i(k − p)μ

k2(k − p)2

)
× f abcf bdef adiAc

μ(−p)Ae
ν(−q)Ai

ν(p + q)

+
g3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

ikσ (k − p)μ(k − p − q)ν

k2(k − p)2(k − p − q)2

× (
8f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

σ (p + q)

+ 4f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
σ (p + q)

+ 4f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
σ (p + q)

+ 4f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
σ (p + q)

+ 2f abif bdcf daeAi
μ(−p)Ac

ν(−q)Ae
σ (p + q)

+ 2f abcf bdif daeAc
μ(−p)Ai

ν(−q)Ae
σ (p + q)
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+ 2f abcf bdef daiAc
μ(−p)Ae

ν(−q)Ai
σ (p + q)

+ f abcf bdef daf Ac
μ(−p)Ae

ν(−q)Af
σ (p + q)

)
, (82)

J = −g2
∫

d4q

(2π)4

(
Ai

μ(q)Ai
μ(−q)

N − 1
− Aa

μ(q)Aa
μ(−q)

N(N − 1)

)
. (83)

Note that J is independent of the external momentum k. Also, expression (82) can be
simplified by making use of the maximal Abelian gauge conditions in momentum space (13),
namely

qμAi
μ = 0, qμAa

μ(q) = igf abi

∫
d4p

(2π)4
Ai

μ(q − p)Ab
μ(p). (84)

Then, for σ(k;A) we obtain

σ(k;A) = g2 kμkν

k2

∫
d4q

(2π)4

1

(k − q)2

(
4

(N − 1)
Ai

μ(q)Ai
ν(−q) +

N − 2

N(N − 1)
Aa

μ(q)Aa
ν(−q)

)
+

ig3(N − 2)

N(N − 1)

kμ

k2

∫
d4p

(2π)4

d4q

(2π)4

1

(k − q)2
f abiAa

μ(q)Ai
ν(p − q)Ab

ν(−p)

+
ig3

N(N − 1)

kμ

k2

∫
d4p

(2π)4

d4q

(2π)4

(
1

(p + k)2
+

1

(k − p)2

)
× f abcf bdef adiAc

μ(−p)Ae
ν(−q)Ai

ν(p + q)

+
ig3

N(N − 1)

kσ kμ

k2

∫
d4p

(2π)4

d4q

(2π)4

(k − p)ν

(k − p)2(k − p − q)2

× (
8f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

σ (p + q)

+ 4f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
σ (p + q)

+ 4f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
σ (p + q)

+ 4f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
σ (p + q)

+ 2f abif bdcf daeAi
μ(−p)Ac

ν(−q)Ae
σ (p + q)

+ 2f abcf bdif daeAc
μ(−p)Ai

ν(−q)Ae
σ (p + q)

+ 2f abcf bdef daiAc
μ(−p)Ae

ν(−q)Ai
σ (p + q)

+ f abcf bdef daf Ac
μ(−p)Ae

ν(−q)Af
σ (p + q)

)
+ O(g4). (85)

Using the relation

f abcf bdef adi = −N − 2

2
f cei , (86)

and performing the change of variables p → −q and q → p in the third line on the rhs of
expression (85), we obtain

σ(k;A) = g2 kμkν

k2
I (1)
μν (k) +

ig3(N − 2)

2N(N − 1)

kμ

k2
I (2)
μ (k)

+
ig3

N(N − 1)

(
kμkνkσ

k2
I (3)
μνσ (k) − kμkσ

k2
I (4)
μσ (k)

)
+ O(g4), (87)

where

I (1)
μν (k) =

∫
d4q

(2π)4

1

(k − q)2

(
4

(N − 1)
Ai

μ(q)Ai
ν(−q) +

N − 2

N(N − 1)
Aa

μ(q)Aa
ν(−q)

)
, (88)
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I (2)
μ (k) =

∫
d4p

(2π)4

d4q

(2π)4

(
1

(k − q)2
− 1

(k + q)2

)
f abiAa

μ(q)Ai
ν(p − q)Ab

ν(−p), (89)

I (3)
μνσ (k) =

∫
d4p

(2π)4

d4q

(2π)4

1

(k − p)2(k − p − q)2

(
8f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

σ (p + q)

+ 4f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
σ (p + q)

+ 4f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
σ (p + q)

+ 4f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
σ (p + q)

+ 2f abif bdcf daeAi
μ(−p)Ac

ν(−q)Ae
σ (p + q)

+ 2f abcf bdif daeAc
μ(−p)Ai

ν(−q)Ae
σ (p + q)

+ 2f abcf bdef daiAc
μ(−p)Ae

ν(−q)Ai
σ (p + q)

+ f abcf bdef daf Ac
μ(−p)Ae

ν(−q)Af
σ (p + q)

)
, (90)

I (4)
μσ (k) =

∫
d4p

(2π)4

d4q

(2π)4

pν

(k − p)2(k − p − q)2

(
8f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

σ (p + q)

+ 4f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
σ (p + q)

+ 4f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
σ (p + q)

+ 4f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
σ (p + q)

+ 2f abif bdcf daeAi
μ(−p)Ac

ν(−q)Ae
σ (p + q)

+ 2f abcf bdif daeAc
μ(−p)Ai

ν(−q)Ae
σ (p + q)

+ 2f abcf bdef daiAc
μ(−p)Ae

ν(−q)Ai
σ (p + q)

+ f abcf bdef daf Ac
μ(−p)Ae

ν(−q)Af
σ (p + q)

)
. (91)

In order to be able to evaluate the form factor σ(k;A) at zero momentum, equation (75),

σ(0;A) ≡ lim
k→0

σ(k;A), (92)

we need to analyze the limit k → 0 of the integrals (88)–(91). As these integrals depend
explicitly on the Fourier components of the gauge fields, Ai

μ(q), Aa
μ(q), the existence of the

zero momentum limit, k → 0, of expressions (88)–(91) relies on the infrared behavior of the
fields Ai

μ(q) and Aa
μ(q). For example, considering (88), it is apparent that the zero momentum

integral

I (1)
μν (0) =

∫
d4q

(2π)4

1

q2

(
4

(N − 1)
Ai

μ(q)Ai
ν(−q) +

N − 2

N(N − 1)
Aa

μ(q)Aa
ν(−q)

)
(93)

does exist provided the quantities Ai
μ(q)Ai

μ(−q), Aa
μ(q)Aa

μ(−q) are not singular at q ≈ 0,
i.e.

Ai
μ(q)Ai

μ(−q)
∣∣
q2≈0 ≈ (q2)α, α > −2,

Aa
μ(q)Aa

μ(−q)
∣∣
q2≈0 ≈ (q2)β, β > −2,

(94)

so that expression (93) is integrable at q ≈ 0. At the present stage, a formal proof of the
infrared behavior expressed by (94) cannot be given. An explicit check of the validity of
(94) can be done only after the evaluation of the gluon propagators. In other words, as done
in the original paper by Gribov [1], (94) is assumed as the working hypothesis in order to
ensure the existence of the zero momentum limit of expressions (88)–(91). Afterward, this
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assumption has to be checked out by looking at the behavior of the diagonal and off-diagonal
gluon propagators at the origin. Nevertheless, we can provide a physical justification for
assuming (94), which follows from the implementation of the restriction to the Gribov region
�. As also observed in [1] in the case of the Landau gauge, the restriction to the region �

amounts to put a boundary in field space, namely the Gribov horizon, which manifests itself
through the appearance of a dynamical mass parameter γ , which is known as the Gribov mass
[1]. As we shall see in the next sections, such a parameter will provide a natural infrared scale
for the field configurations, resulting in a gluon propagator which is not singular at the origin,
thus justifying the starting working hypothesis (94). In fact, looking at the expressions for the
diagonal and off-diagonal propagators given in equations (209), (210), one sees that they are
not singular at the origin.

The integral I (2)
μ (k) is automatically vanishing when k = 0; the integrals I (1)

μν (0) and I (4)
μν (0)

must be proportional to δμν in the limit k → 0, since δμν is the only Lorentz invariant second-
rank tensor available; and finally I (3)

μνσ (k) must vanish when k → 0, as in four dimensions
there is no Lorentz invariant third-order rank tensor. Summarizing, we have

I (1)
μν (0) = I

(1)
λλ (0)

4
δμν (by Lorentz covariance),

I (2)
μ (0) = 0 (automatically),

I (3)
μνσ (0) = 0 (by Lorentz covariance),

I (4)
μν (0) = I

(4)
λλ (0)

4
δμν (by Lorentz covariance).

(95)

Thus, taking the limit k → 0 of σ(k;A) for the form factor σ(0;A), we obtain

σ(0;A) ≡ lim
k→0

σ(k;A)

= g2 I
(1)
λλ (0)

4
− ig3

N(N − 1)

I
(4)
λλ (0)

4
+ O(g4)

= g2
∫

d4q

(2π)4

(
1

(N − 1)

Ai
λ(q)Ai

λ(−q)

q2
+

N − 2

4N(N − 1)

Aa
λ(q)Aa

λ(−q)

q2

)
− ig3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

pμ

p2(p + q)2

×
(

2f abif bcjf cakAi
λ(−p)Aj

μ(−q)Ak
λ(p + q)

+ f abif bdjf dacAi
λ(−p)Aj

μ(−q)Ac
λ(p + q)

+ f abif bdcf dajAi
λ(−p)Ac

μ(−q)A
j

λ(p + q)

+ f abcf bdif dajAc
λ(−p)Ai

μ(−q)A
j

λ(p + q)

+
1

2
f abif bdcf daeAi

λ(−p)Ac
μ(−q)Ae

λ(p + q)

+
1

2
f abcf bdif daeAc

λ(−p)Ai
μ(−q)Ae

λ(p + q)

+
1

2
f abcf bdef daiAc

λ(−p)Ae
μ(−q)Ai

λ(p + q)

+
1

4
f abcf bdef daf Ac

λ(−p)Ae
μ(−q)A

f

λ (p + q)

)
. (96)
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As a useful check, we note here that, for N = 2, the previous results obtained in [32] are
recovered.

5.2. Gribov’s quadratic approximation and the gap equation

Having characterized the factor σ(0;A), equation (96), we start to analyze the consequences
on the theory of the restriction of the domain of integration to the Gribov region, as stated
by equation (77). As we shall see, this will amount to modify the starting gauge field
theory by the addition of a nonperturbative term, usually referred to as the horizon function
[7, 8, 48]. To illustrate this point, we discuss first the form factor σ(0;A) in the so-called
quadratic approximation [1], i.e. we shall first consider σ(0;A) till the second order in the
gauge fields. Thus,

σ(0;A) = g2 1

V

∑
q

(
1

(N − 1)

Ai
λ(q)Ai

λ(−q)

q2
+

N − 2

4N(N − 1)

Aa
λ(q)Aa

λ(−q)

q2

)
, (97)

where, according to [1], a finite volume V has been considered. As in the case of SU(2) [32],
the quadratic approximation will enable us to obtain the first term of the horizon function,
which will play an important role for its all order extension.

Using the integral representation of the step function,

θ(x) =
∫ ε+i∞

ε−i∞

dζ

2π iβ
eζx, (98)

for the partition function (77) we obtain the following expression:

Z =
∫

dζ

2π iζ
dμ e−SYM+ζ(1−σ(0;A)). (99)

Moreover, in the quadratic approximation, Z → Zquad:

Zquad = lim
α→0
β→0

∫
dζ

2π iζ
eζ

∫
DAoffDAdiag e− 1

2

∑
k(A

a
μ(k)Pab

μν (k;ζ,α)Ab
ν(−k)+Ai

μ(k)Qij
μν (k;ζ,β)A

j
ν (−k)),

Pab
μν(k; ζ, α) =

[(
k2 +

g2(N − 2)ζ

2N(N − 1)V k2

)
δμν −

(
1 − 1

α

)
kμkν

]
δab,

Qij
μν(k; ζ, β) =

[(
k2 +

2g2ζ

(N − 1)V k2

)
δμν −

(
1 − 1

β

)
kμkν

]
δij ,

(100)

where use has been made of the relations

δ(D · Aoff) ∝ lim
α→0

e− 1
2α

∫
d4x(Dab

μ Ab
μ)2

,

δ(∂ · Adiag) ∝ lim
β→0

e− 1
2β

∫
d4x(∂μAi

μ)2

,

Aa,i
μ (x) = 1

V 1/2

∑
k

Aa,i
μ (k)e−ikx,

δk,k′ = 1

V

∫
V

d4x eix(k−k′). (101)

Integrating over the gauge fields gives

Zquad = lim
α→0
β→0

∫
dζ

2π i
ef (ζ ;α,β),

f (ζ ;α, β) = ζ − ln ζ − 1

2
ln detPab

μν(k; ζ, α) − 1

2
ln detQij

μν(k; ζ, β)
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= ζ − ln ζ − 3N(N − 1)

2

∑
k

[
ln

(
k2 +

g2(N − 2)ζ

2N(N − 1)V k2

)

+
1

3
ln

(
k2

α
+

g2(N − 2)ζ

2N(N − 1)V k2

)]
− 3(N − 1)

2

×
∑

k

[
ln

(
k2 +

2g2ζ

(N − 1)V k2

)
+

1

3
ln

(
k2

β
+

2g2ζ

(N − 1)V k2

)]
. (102)

The integral over ζ can be evaluated in a saddle point approximation [1]

Zquad ≈ lim
α→0
β→0

ef (ζ �;α,β),
df (ζ )

dζ

∣∣∣∣
ζ=ζ �

= 0. (103)

Condition (103) gives us the following relation9:

1 − 1

ζ �
− 1

V

∑
k

3g2

k4 + 2g2ζ �

(N−1)V

− 1

V

∑
k

3(N − 2)g2/4

k4 + (N−2)g2ζ �

2N(N−1)V

= 0. (104)

As in [1], in order to take the thermodynamic limit V → ∞, we introduce the so-called Gribov
parameter γ :

γ 4 = lim
V →∞

ζ �

2V
. (105)

Therefore, in the infinite volume limit V → ∞, we obtain∫
d4k

(2π)4

3g2

k4 + 4g2γ 4

N−1

+
∫

d4k

(2π)4

3(N − 2)g2/4

k4 + (N−2)g2γ 4

N(N−1)

= 1, (106)

where we have neglected the term 1/ζ �. As observed in [1], the Gribov parameter is not an
independent parameter of the theory. It turns out to be determined at the quantum level in a
self-consistent way as a function of the coupling constant. In fact, equation (106) is nothing
but the gap equation enabling us to express γ as a function of the coupling constant g and of
the invariant scale �QCD, see [13].

Coming back to the partition function in the saddle point approximation, taking the form
factor σ(0; k) in the quadratic approximation and performing the thermodynamic limit, we
can write

Z = N ′
∫

dμ e−(SYM+SG). (107)

Here, N ′ is an irrelevant normalization factor and SG is a nonlocal term, given by

SG = lim
V →∞

ζ �σ (0;A)

= g2γ 4
∫

d4x d4y

(
2

N − 1
Ai

μ(x)G0(x − y)Ai
μ(y) +

N − 2

2N(N − 1)
Aa

μ(x)G0(x − y)Aa
μ(y)

)
= g2γ 4

∫
d4x

(
2

N − 1
Ai

μ

(
1

−∂2

)
Ai

μ +
N − 2

2N(N − 1)
Aa

μ

(
1

−∂2

)
Aa

μ

)
. (108)

Equation (107) shows that the implementation of the restriction of the domain of integration to
the Gribov region � can be achieved by adding to the Yang–Mills action a nonlocal term given
in equation (108). Expression (108) represents only the first term of what is usually called the
horizon function, whose final expression will be discussed in details in the next section.

9 Note that the gauge parameters α, β have been set to zero, see equation (101).
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6. Characterization of the horizon function

6.1. A few words on the horizon function in the Landau gauge and in SU(2) maximal
Abelian gauge

Before entering into the technical details of the determination of the horizon function for
SU(N), it is useful to give a short survey of what has been already achieved in other
cases. In the Landau gauge, it has been shown by Zwanziger [7, 8] that the horizon function
implementing the restriction to the Gribov region �10 is

HLandau = g2
∫

d4x d4y DAE
μ (x)[(−∂ · D)−1]AB(x, y)DBE

μ (y), (110)

where [(−∂ · D)−1]AB(x, y) is the inverse of the Faddeev–Popov operator

−(∂ · D)AB = −∂μDAB
μ = −∂μ

(
∂μδAB − gf ABCAC

μ

)
. (111)

Accordingly, for the partition function implementing the restriction of the domain of integration
to the Gribov region, we write

ZLandau =
∫

�

dμ e−SYM =
∫

dμ e−(SYM+γ 4HLandau), (112)

where, to the first order, the Gribov parameter γ is defined by the gap equation [7, 8]

1 = 3Ng2

4

∫
d4k

(2π)4

1

k4 + 2Ng2γ 4
. (113)

One should observe that expression (110) is nonlocal. Willing to give a quantum field theory
meaning to such an expression, one should be able to cast it into a local and renormalizable
form. We mention here that a consistent, local and renormalizable framework for expression
(110) is in fact available; see [11] for an updated discussion of this nontrivial issue. Moreover,
it is worth to point out that the Zwanziger horizon function (110) turns out to be equivalent to
Gribov’s ghost form factor, as shown in [51] by comparing the expansion of both expressions
till the third in the gauge field.

In the case of the SU(2) Yang–Mills theory in the maximal Abelian gauge, the results
found in [48] are very similar to the ones obtained by Zwanziger in the Landau gauge.
Summarizing, the form of the horizon function obtained by requiring that it can be cast in
local form, it can be renormalizable and it reduces to Gribov’s ghost form factor in the quadratic
approximation is given by

H
SU(2)
MAG = g2

∫
d4x d4x εacAμ(x)(M−1)ab(x, y)εbcAμ(y), (114)

where (M−1)ab(x, y) is the inverse of the Faddeev–Popov operator

Mab = −Dac
μ Dcb

μ − g2εacεbdAc
μAd

μ. (115)

6.2. Candidates for the horizon function in SU(N)

Let us face now the problem of finding the horizon term for the general case of SU(N). The
first step for accomplishing this task is that of selecting the possible candidates which are

10 We recall here that, analogously to the case of the maximal Abelian gauge, the Gribov region in the Landau gauge
is defined through the positivity of the Faddeev–Popov operator, i.e.

� = {AA
μ; ∂μAA

μ = 0;−∂μ(∂μδAB − gf ABCAC
μ) > 0}. (109)
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compatible with the following requirements:

(1) it should give back to the Gribov term (108) in the quadratic approximation;
(2) it should reproduce the particular case (114) when N = 2;
(3) it should be localizable and compatible with the requirement of power counting

renormalizability.

Five possible candidates which are compatible with the aforementioned requirements
have been found, namely

H 1st = 2g2

N(N − 1)

∫
x,y

f aciAi
μ,x(M−1)ab

x,yf
bcjAj

μ,y

+
g2

2N(N − 1)

∫
x,y

f acdAd
μ,x(M−1)ab

x,yf
bceAe

μ,y (116)

H 2nd = 2g2

N(N − 1)

∫
x,y

(
f aciAi

μ +
1

2
f acdAd

μ

)
x

(M−1)ab
x,y

(
f bcjAj

μ +
1

2
f bceAe

μ

)
y

, (117)

H 3rd = 2g2

N(N − 1)

∫
x,y

(
f aciAi

μ − 1

2
f acdAd

μ

)
x

(M−1)ab
x,y

(
f bcjAj

μ − 1

2
f bceAe

μ

)
y

, (118)

H 4th = 2g2

N(N − 1)

∫
x,y

f aciAi
μ,x(M−1)ab

x,yf
bcjAj

μ,y + ξ g2
∫

x,y

f acdAd
μ,x(M−1)ab

x,yf
bceAe

μ,y

+ (N − 2)ζ g2
∫

x,y

f aciAc
μ,x(M−1)ab

x,yf
bdiAd

μ,y, (119)

H 5th = 2g2

N(N − 1)

∫
x,y

(
f aciAi

μ +
α

2
f acdAd

μ

)
x

(M−1)ab
x,y

(
f bcjAj

μ +
α

2
f bceAe

μ

)
y

+
(N − 2)g2

2N(N − 1)
β

∫
x,y

f aciAc
μ,x(M−1)ab

x,yf
bdiAd

μ,y. (120)

In all expressions (116)–(120), the nonlocal operator (M−1)ab
x,y is the inverse of the Faddeev–

Popov operator (15) and the symbol
∫
x,y

stands for
∫

d4x d4y. In equation (119), the parameters
ξ and ζ are positive and obey the following constraint:

ξ + ζ = 1

2N(N − 1)
. (121)

In expression (120), the parameter β is positive and is related to α according to

α2 + (N − 2)β = N − 2. (122)

Let us now see how these five candidates fulfill the three requirements. The first criterion
claims that, in the quadratic approximation, the horizon function has to reduce to the Gribov
term defined in (108). In the quadratic approximation, the inverse of the Faddeev–Popov can
be taken as

(M−1)ab ≈ δab

−∂2
. (123)

Moreover, using the following relations between the structure constants:

f abif abc = 0, f abif abj = Nδij ,

f abcf abd = (N − 2)δcd , f aicf aid = δcd,
(124)

one can easily check that all five candidates (116)–(120) obey the first requirement.
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The second requirement states that, when N = 2, the horizon function must equal
expression (114). It is easy to check that this requirement is also fulfilled by observing that in
the case of SU(2) we have

f abi → f ab3 = εab, f abc → 0, Ai
μ → A3

μ = Aμ. (125)

Besides, there are terms proportional to (N − 2) which automatically vanish for N = 2.
The third requirement is about the possibility of casting the nonlocal horizon terms in a

local form by introducing a suitable set of auxiliary fields, in a way compatible with power
counting renormalizability. Let us analyze each case separately. The first candidate (116)
consists of the sum of two different terms which can be localized independently as follows:

e−γ 4H 1st =
∫

DϕDϕ̄(detM)4N(N−1) exp

[
−

∫
d4x

(
ϕ̄ac

μ Mabϕbc
μ + θ2 f abiAi

μ(ϕ − ϕ̄)ab
μ

)]
×
∫

DλDλ̄(detM)4N(N−1) exp

[
−
∫

d4x

(
λ̄ac

μ Mabλbc
μ +

θ2

2
f abcAc

μ(λ − λ̄)ab
μ

)]
,

(126)

where θ2 stands for

θ2 =
√

2g2γ 4

N(N − 1)
. (127)

In this expression,
(
ϕab

μ , ϕ̄ab
μ

)
and

(
λab

μ , λ̄ab
μ

)
are two pairs of complex commuting auxiliary

fields. The determinant, (detM)4N(N−1), can be exponentiated by employing a pair of complex
anticommuting fields

(
ω̄ac

μ , ωbc
μ

)
:

(detM)4N(N−1) =
∫

DωDω̄ e
∫

d4x ω̄ac
μ Mabωbc

μ . (128)

Thus, the local version of H 1st is

H 1st
Local =

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ + θ2 f abiAi

μ(ϕ − ϕ̄)ab
μ

+ λ̄ac
μ Mabλbc

μ − η̄ac
μ Mabηbc

μ +
θ2

2
f abcAc

μ(λ − λ̄)ab
μ

]
, (129)

where
(
ηab

μ , η̄ab
μ

)
is another pair of complex anticommuting fields similar to

(
ωab

μ , ω̄ab
μ

)
. As one

can easily see, the set of fields (ϕ, ϕ̄, ω, ω̄) is responsible for the localization of the diagonal
sector, while the set (λ, λ̄, η, η̄) allows us to localize the off-diagonal sector.

In a similar way, we can localize the remaining candidates. To localize expressions (117)
and (118), it is necessary to employ only one set of localizing fields (ϕ, ϕ̄, ω, ω̄):

H 2nd
Local =

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ + θ2

(
f abiAi

μ +
1

2
f abcAc

μ

)
(ϕ − ϕ̄)ab

μ

]
, (130)

H 3rd
Local =

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ + θ2

(
f abiAi

μ − 1

2
f abcAc

μ

)
(ϕ − ϕ̄)ab

μ

]
. (131)

In the case of expression (119), we find

H 4th
Local =

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ + θ2 f abiAi

μ(ϕ − ϕ̄)ab
μ

+ λ̄ac
μ Mabλbc

μ − η̄ac
μ Mabηbc

μ + ξ 1/2γ 2 gf abcAc
μ(λ − λ̄)ab

μ

+ ψ̄ai
μ Mabψbi

μ − χ̄ ai
μ Mabχbi

μ +
√

(N − 2)ζ γ 2 gf abiAa
μ(ψ − ψ̄)bi

μ

]
. (132)
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Note that, here, a new set of fields has been employed:
(
ψai

μ , ψ̄ai
μ

)
stands for a pair of complex

commuting fields and
(
χai

μ , χ̄ai
μ

)
for a pair of complex anticommuting ones. We also observe

that these fields carry both off-diagonal and diagonal indices.
Finally, the local version of (120) is

H 5th
Local =

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ + θ2

(
f abiAi

μ +
α

2
f abcAc

μ

)
(ϕ − ϕ̄)ab

μ

+ ψ̄ai
μ Mabψbi

μ − χ̄ ai
μ Mabχbi

μ +
√

(N − 2)β
θ2

2
f abiAa

μ(ψ − ψ̄)bi
μ

]
. (133)

It is worth to point out that all local expressions, equations (129), (130), (131), (132), (133), are
power counting renormalizable. All five candidates, (116)–(120), fulfill the three requirements
given at the beginning of this section.

A further requirement is thus needed in order to select only one candidate. The natural
setup is that of strengthening the requirement of the equivalence between Gribov’s form factor
σ(0;A) and the possible horizon terms, as done in [51] in the case of the Landau gauge.
This amounts to expand the horizon terms, equations (116)–(120), till the third order in the
gauge field and compare the resulting expressions with that which we have already obtained
for σ(0;A); see equation (96).

6.3. Selecting only one candidate for the horizon function

In this section we show that the only candidate which is compatible with the expression of
σ(0;A) is H 2nd (equation (117)). For that purpose, the expansion till the first order in the
gauge field of the inverse, (M−1)ab, of the Faddeev–Popov operator

Mab(x)(M−1)bc(x, y) = δacδ(x − y) (134)

is needed. Recalling that Mab(x) is defined by expression (15), we can write

Mab = −δab∂2 + 2gf abiAi
μ∂μ + gf abcAc

μ∂μ + O(g2). (135)

To evaluate the inverse of Mab order-by-order, we set

(M−1)ab(x, y) = Gab
0 (x − y) + g Gab

1 (x, y) + O(g2), (136)

so that, to the first order, we have to solve the equation

Mac(x)
(
Gab

0 (x − y) + g Gab
1 (x, y) + O(g2)

) = δabδ(x − y), (137)

where Gab
0 (x − y) is the free ghost propagator:

Gab
0 (x − y) = δab

|x − y|2 = δab

∫
d4q

(2π)4

1

q2
e−iq(x−y). (138)

To the first order, we have

−∂2
xGab

1 (x, y) = −2f aciAi
μ(x) ∂x

μGcb
0 (x − y) − f acdAd

μ(x) ∂x
μGcb

0 (x − y), (139)

which gives

Gab
1 (x, y) = −2

∫
d4z

1

|x − z|2
(

f abiAi
μ(z) +

1

2
f abcAc

μ(z)

)
∂z
μ

1

|z − y|2 . (140)

Therefore,

(M−1)ab(x, y) = δab

|x − y|2 − 2
∫

d4z
1

|x − z|2
(

f abiAi
μ(z) +

1

2
f abcAc

μ(z)

)
∂z
μ

1

|z − y|2
+ O(g2). (141)
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We are now ready to expand the horizon function (117) in powers of the gauge field.
Introducing the combination

Bab
μ = f abiAi

μ + 1
2f abcAc

μ, (142)

one can write

H 2nd = 2g2

N(N − 1)

∫
d4x d4y Bac

μ (x)(M−1)ab(x, y)Bbc
μ (y), (143)

which, by means of equations (141) and (142), becomes

H 2nd = 2g2

N(N − 1)

∫
d4x d4y Bab

μ (x)
1

|x − y|2 Bab
μ (y) − 4g3

N(N − 1)

×
∫

d4x d4y d4z Bac
μ (x)

1

|x − z|2 Bab
ν (z)∂z

ν

1

|z − y|2 Bbc
μ (y) + O(g4). (144)

Explicitly, we have

H 2nd = 2g2

N − 1

∫
d4x d4y

Ai
μ(x)Ai

μ(y)

|x − y|2 +
(N − 2)g2

2N(N − 1)

∫
d4x d4y

Aa
μ(x)Aa

μ(y)

|x − y|2

− 4g3

N(N − 1)

∫
d4x d4yd4z

1

|x − z|2 ∂z
ν

1

|z − y|2
(

f acif abjf bckAi
μ(x)Aj

ν(z)A
k
μ(y)

+
1

2
f acif abjf bcf Ai

μ(x)Aj
ν(z)A

f
μ(y) +

1

2
f acif abef bckAi

μ(x)Ae
ν(z)A

k
μ(y)

+
1

4
f acif abef bcf Ai

μ(x)Ae
ν(z)A

f
μ(y) +

1

2
f acdf abjf bckAd

μ(x)Aj
ν(z)A

k
μ(y)

+
1

4
f acdf abjf bcf Ad

μ(x)Aj
ν(z)A

f
μ(y) +

1

4
f acdf abef bckAd

μ(x)Ae
ν(z)A

k
μ(y)

+
1

8
f acdf abef bcf Ad

μ(x)Ae
ν(z)A

f
μ(y)

)
+ O(g4). (145)

Taking the Fourier transform

H 2nd = 2g2

(N − 1)

∫
d4q

(2π)4

Ai
λ(q)Ai

λ(−q)

q2
+

(N − 2)g2

2N(N − 1)

∫
d4q

(2π)4

Aa
λ(q)Aa

λ(−q)

q2

− 2ig3

N(N − 1)

∫
d4p

(2π)4

d4q

(2π)4

pμ

p2(p + q)2

(
2f abif bcjf cakAi

μ(−p)Aj
ν(−q)Ak

μ(p + q)

+ f abif bdjf dacAi
μ(−p)Aj

ν(−q)Ac
μ(p + q)

+ f abif bdcf dajAi
μ(−p)Ac

ν(−q)Aj
μ(p + q)

+ f abcf bdif dajAc
μ(−p)Ai

ν(−q)Aj
μ(p + q)

+
1

2
f bcdf bdef daiAc

μ(−p)Ae
ν(−q)Ai

μ(p + q)

+
1

2
f abcf bdif daeAc

μ(−p)Ai
ν(−q)Ae

μ(p + q)

+
1

2
f abif bdcf daeAi

μ(−p)Ac
ν(−q)Ae

μ(p + q)

+
1

4
f abcf bdef daf Ad

μ(−p)Ae
ν(−q)Af

μ(p + q)

)
+ O(g4), (146)

and comparing with Gribov’s form factor σ(0;A), equation (96), it is apparent that

σ(0, A) = 1
2H 2nd + O(A4). (147)
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The same procedure can be easily repeated for the other expressions, H 1st,H 3st,H 4st,H 5st.
The corresponding expansions do not coincide with equation (96). Therefore, from now
on, we shall consider expression (143) as the correct horizon function we were looking for.
Consequently, for the partition function defining the theory we shall take

Z =
∫

dμ e−(SYM+γ 4 H 2nd). (148)

In the next section, we shall construct a complete local action out of H 2nd and we shall study
the possible dimension 2 operators which can be introduced. The effect of the condensation
of these operators on the tree-level gluon and ghost propagators will also be worked out.

7. Local dimension 2 operators and the tree-level gluon and ghost propagators

7.1. A local and invariant action

According to expression (148), the general local action that we can construct for the SU(N)

Euclidean Yang–Mills theory in the maximal Abelian gauge reads

Z =
∫

D� e−S0 , S0 = SYM + SMAG + SLocal, (149)

where

D� ≡ DAaDAiDbaDbiDcaDc̄aDciDc̄iDϕDϕ̄DωDω̄, (150)

and SLocal ≡ H 2nd
Local given by equation (130). Explicitly, we have

S0 =
∫

d4x

(
1

4
Fa

μνF
a
μν +

1

4
F i

μνF
i
μν + iba Dab

μ Ab
μ − c̄aMabcb − (

Dad
μ Ad

μ

)
× (

gf abcc̄bcc + gf abi c̄bci
)

+ ibi ∂μAi
μ + c̄i ∂μ

(
∂μci + gf abiAa

μcb
)

+ ϕ̄ac
μ Mabϕbc

μ

− ω̄ac
μ Mabωbc

μ +

√
2γ 4

N(N − 1)

(
gf abiAi

μ +
g

2
f abcAc

μ

)(
ϕab

μ − ϕ̄ab
μ

))
. (151)

Having at our disposal a local action, we may investigate its symmetry content. Let us start
with the BRST symmetry, already obtained for the gauge-fixed theory; see equations (16). As
established in the case of the Landau gauge [7, 8, 13] and SU(2) maximal Abelian gauge [49],
the auxiliary fields (ϕ, ϕ̄, ω, ω̄) transform as a BRST quartet, i.e.

sϕab
μ = ωab

μ , sωab
μ = 0,

sω̄ab
μ = ϕ̄ab

μ , sϕ̄ab
μ = 0, (152)

s2 = 0.

As a consequence, we obtain

sSLocal = sS(1) + sS(2),

sS(1) = s

∫
d4x

(
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ

) =
∫

d4x
(
ϕ̄ac

μ N abϕbc
μ + ω̄ac

μ N abωbc
μ

)
,

sS(2) = θ2 s

∫
d4x Bab

μ

(
ϕab

μ − ϕ̄ab
μ

) = θ2
∫

d4x
[(

sBab
μ

)(
ϕab

μ − ϕ̄ab
μ

)
+ Bab

μ ωab
μ

]
,

(153)

26



J. Phys. A: Math. Theor. 43 (2010) 245402 M A L Capri et al

where θ2 is given in equation (127), Bab
μ (x) in equation (142) and the operator N ab is defined

as

N ab�b = s(Mab�b) − Mabs�b

= [
2gf abi

(
sAi

μ

)
∂μ + gf abc

(
sAc

μ

)
∂μ + gf abi∂μ

(
sAi

μ

)
+ 2g2f acif bcj

(
sAi

μ

)
Aj

μ

g2f adcf bdis
(
Ac

μAi
μ

) − g2(f acif bdi + f adif bci)
(
sAc

μ

)
Ad

μ

]
�b

= −[
2gf aci

(
∂μci + gf cdiAc

μcd
)
Dcb

μ − gf acd
(
Dce

μ ce + gf cef Ae
μcf + gf ceiAe

μci
)
Ddb

μ

+ gf abi∂μ

(
∂μci + gf cdiAc

μcd
)

+ g2f adcf bdiAc
μ

(
∂μci + gf ef iAe

μcf
)

− g2(f acif bdi + f adif bci)
(
Dce

μ ce + gf cef Ae
μcf + gf cejAe

μcj
)
Ad

μ

]
�b, (154)

with �a representing all the off-diagonal fields of the theory

�a ≡ {
Aa

μ, ba, ca, c̄a, ϕab
μ , ϕ̄ab

μ , ωab
μ , ω̄ab

μ

}
. (155)

The first term S(1) can be rewritten in a BRST invariant way by making a linear shift in the
variable ωab

μ (x) [7, 8, 13, 49]:

ωab
μ (x) → ωab

μ (x) +
∫

d4y(M−1)ac(x, y)N cd(y)ϕdb
μ (y). (156)

Thus,

S(1) → S(1)
inv =

∫
d4x

(
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ − ω̄ac

μ N abϕbc
μ

)
=

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ − ω̄ac

μ

(
s
(
Mabϕbc

μ

) − Mabωbc
μ

)]
=

∫
d4x

[
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ s
(
Mabϕbc

μ

)]
= s

∫
d4x ω̄ac

μ Mabϕbc
μ . (157)

In order to deal with the second term S(2), let us note that

Bab
μ ϕ̄ab

μ = Bab
μ sω̄ab

μ = s
(
Bab

μ ω̄ab
μ

) − (
sBab

μ

)
ω̄ab

μ , (158)

and then,

S(2) = θ2
∫

d4x
[
Bab

μ ϕab
μ − s

(
Bab

μ ω̄ab
μ

)
+
(
sBab

μ

)
ω̄ab

μ

]
. (159)

The last term on the rhs of (159) can be eliminated by performing a second linear shift in
ωab

μ (x) [7, 8, 13, 49]:

ωab
μ (x) → ωab

μ (x) + θ2
∫

d4y(M−1)ac(x, y) sBcb
μ (y). (160)

Therefore, the local version of the horizon function might be taken as

SLocal = s

∫
d4x ω̄ac

μ Mabϕbc
μ + θ2

∫
d4x

[
Bab

μ ϕab
μ − s

(
Bab

μ ω̄ab
μ

)]
. (161)

Consequently, the action S0 becomes

S0 =
∫

d4x

(
1

4
Fa

μνF
a
μν +

1

4
F i

μνF
i
μν + iba Dab

μ Ab
μ − c̄aMabcb

− (
Dad

μ Ad
μ

)(
gf abcc̄bcc + gf abi c̄bci

)
+ ibi ∂μAi

μ + c̄i ∂μ

(
∂μci + gf abiAa

μcb
))

+ s

∫
d4x ω̄ac

μ Mabϕbc
μ + θ2

∫
d4x

[
Bab

μ ϕab
μ − s

(
Bab

μ ω̄ab
μ

)]
. (162)
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As it occurs in the case of the Landau gauge [7, 8, 13] and SU(2) maximal Abelian gauge
[49], the action S0 does not possess exact BRST invariance, which turns out to be broken by
soft terms proportional to the Gribov parameter, i.e. to θ2. In fact

sS0 = θ2�break, (163)

where

�break =
∫

d4x

[
Bab

μ ωab
μ −

(
f abi

(
∂μci + gf cdiAc

μcd
)

+
1

2
f abc

(
Dcm

μ cm + gf cmnAm
μcn + gf cmiAm

μci
))

ϕab
μ

]
. (164)

Being of dimension 2, the breaking term �break is soft. As extensively analyzed in [13, 52],
the existence of such a breaking does not jeopardize the renormalizability of the theory as
well as the introduction of meaningful operators which display good analyticity properties.
Of course, the fact that the breaking is soft is of pivotal importance here. As underlined in
[13, 53], the existence of such a breaking is linked to the presence of a boundary in field space,
namely the Gribov horizon ∂�.

7.2. Embedding the theory into a more general one

The standard way of dealing with soft breaking terms is that of introducing them into the
starting action as composite operators coupled to a suitable set of external sources. In doing
so, a more general action displaying exact BRST invariance is obtained. Furthermore, the
starting action S0 and its breaking term �break are recovered by demanding that the external
sources attain a particular value, usually referred to as the physical value [7, 8, 13]. In order
to construct such a generalized action, we introduce external sources

(
V ab

μν , Uab
μν, V̄

ab
μν , Ū ab

μν

)
transforming as

sV ab
μν = Uab

μν, sUab
μν = 0,

sŪ ab
μν = V̄ ab

μν , sV̄ ab
μν = 0,

(165)

and the invariant action S inv
Local given by

S inv
Local = s

∫
d4x ω̄ac

μ Mabϕbc
μ + s

∫
d4x

[
Ū ac

μν

(
Dab

μ − g

2
f abdAd

μ

)
ϕbc

ν

+ V ac
μν

(
Dab

μ − g

2
f abdAd

μ

)
ω̄bc

ν

]
=

∫
d4x

{
ϕ̄ac

μ Mabϕbc
μ − ω̄ac

μ Mabωbc
μ − ω̄ac

μ N abϕbc
μ + V ac

μν

[(
Dab

μ − g

2
f abdAd

μ

)
ϕ̄bc

ν

+ gf abi
(
∂μci + gf deiAd

μce
)
ω̄bc

ν +
g

2
f abd

(
Dde

μ ce + gf def Ae
μcf + gf deiAe

μci
)
ω̄bc

ν

]
+ V̄ ac

μν

(
Dab

μ − g

2
f abdAd

μ

)
ϕbc

ν − Ū ac
μν

[(
Dab

μ − g

2
f abdAd

μ

)
ωbc

ν

+ gf abi
(
∂μci + gf deiAd

μce
)
ϕbc

ν +
g

2
f abd

(
Dde

μ ce + gf def Ae
μcf + gf deiAe

μci
)
ϕbc

ν

]
+ Uac

μν

(
Dab

μ − g

2
f abdAd

μ

)
ω̄bc

ν

}
. (166)
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The expression SLocal is thus recovered from the generalized one S inv
Local when the sources attain

their physical values:

V ab
μν

∣∣
phys = −V̄ ab

μν

∣∣
phys = −

√
2γ 4

N(N − 1)
δabδμν, Uab

μν

∣∣
phys = Ū ab

μν

∣∣
phys = 0, (167)

so that

S inv
Local

∣∣
phys = SLocal. (168)

We end up thus with a generalized invariant action11

Sinv = SYM + SMAG + S inv
Local, (169)

sSinv = 0, (170)

which reduces to S0 in the physical limit

Sinv|phys = S0. (171)

The BRST invariance enjoyed by Sinv can be translated in a powerful functional identity,
the Slavnov–Taylor identity, which is the starting point for the analysis of the all-order
renormalizability, which we shall present separately in a forthcoming work. To derive
such identity, we need to introduce more external sources coupled to the nonlinear BRST
transformations of the fields [54]. To that purpose, we note that the BRST transformation of
the off-diagonal component of the gauge field Aa

μ(x) can be split into three nonlinear parts:

sAa
μ = Pa

μ + Qa
μ + Ra

μ, (172)

Pa
μ = −Dab

μ cb, Qa
μ = −gf abcAb

μcc, Ra
μ = −gf abiAb

μci . (173)

These nonlinear terms can be defined separately by introducing the following set of external
sources

sξa
μ = Ka

μ − �a
μ, sKa

μ = s�a
μ = 0,

sϑa
μ = ϒa

μ − �a
μ, sϒa

μ = s�a
μ = 0,

(174)

and writing

S
(1)
ext =

∫
d4x

[
�a

μ Pa
μ + Ka

μ Qa
μ + ϒa

μ Ra
μ + ξa

μ

(
sQa

μ

)
+ ϑa

μ

(
sRa

μ

)]
. (175)

Since

s2Aa
μ = sPa + sQa + sRa = 0, (176)

one immediately verifies that sS
(1)
ext = 0. The remaining nonlinear transformations can be

defined by

S
(2)
ext =

∫
d4x

[
�i

μ

(
sAi

μ

)
+ La(sca) + Li(sci)

]
, (177)

with

s�i
μ = sLi = sLa = 0. (178)

11 The complete invariant action must contain a generalized version of the term Sα in (17) in order to establish its
renormalizability. We refer the reader to [48], where this analysis is done in detail for the SU(2) case. However, in
the present section, we are ultimately interested only in the computation of the tree-level propagators of the maximal
Abelian gauge; therefore, we can set α = 0 at this level.
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Therefore, the complete action �0 defined by

�0 = Sinv + S
(1)
ext + S

(2)
ext (179)

obeys the following Slavnov–Taylor identity:

S(�0) =
∫

d4x

[(
δ�0

δ�a
μ

+
δ�0

δKa
μ

+
δ�0

δϒa
μ

)
δ�0

δAa
μ

+
δ�0

δ�i
μ

δ�0

δAi
μ

+
δ�0

δLa

δ�0

δca
+

δ�0

δLi

δ�0

δci

+ iba δ�0

δc̄a
+ ibi δ�0

δc̄i
+ ωab

μ

δ�0

δϕab
μ

+ ϕ̄ab
μ

δ�0

δω̄ab
μ

+ Uab
μν

δ�0

δV ab
μν

+ V̄ ab
μν

δ�0

δŪab
μν

+
(
Ka

μ − �a
μ

)δ�0

δξa
μ

+
(
ϒa

μ − �a
μ

)δ�0

δϑa
μ

]
= 0. (180)

Besides the Slavnov–Taylor identity, equation (180), the action �0 displays a rather rich
symmetry content. There exist in fact several symmetries involving the exchange between the
Faddeev–Popov ghosts (ca, c̄a) and the localizing auxiliary fields (ϕ, ϕ̄, ω, ω̄), namely

δa
μ�0 = 0, δ̄a

μ�0 = 0, da
μ�0 = 0, d̄a

μ�0 = 0, (181)

where the operators
(
δa
μ, δ̄a

μ, da
μ, d̄a

μ

)
act on the fields and sources as

• the δa
μ-transformation:

δc
ν c̄

a = ϕac
ν , δc

νϕ̄
ab
μ = δμνδ

bcca, δc
νb

a = −igf abiϕbc
ν ci,

δc
ν�

a
μ = V ac

μν , δc
νK

a
μ = 1

2V ac
μν ,

(182)

• the δ̄a
μ-transformation:

δ̄c
ν c̄

a = ω̄ac
ν ,

δ̄c
νω

ab
μ = −δμνδ

bcca,

δ̄c
νb

a = −igf abdω̄bc
ν cd − igf abiω̄bc

ν ci, (183)

δ̄c
ν�

a
μ = Ū ac

μν,

δ̄c
νK

a
μ = 1

2 Ū ac
μν,

• the da
μ-transformation:

dc
ν c̄

a = ωac
ν + gf abiϕbc

ν ci,

dc
ν ω̄

ab
μ = δμνδ

bcca,

dc
ν ϕ̄

ab
μ = −δμνδ

bc

(
gf adicdci +

g

2
f adecdce

)
,

dc
νb

a = −igf abiωbc
ν ci − i

g2

2
f abif deiωbc

ν cdce,

dc
ν�

a
μ = Uac

μν,

dc
νK

a
μ = 1

2
Uac

μν,

dc
ν ξ

a
μ = −1

2
V ac

μν ,

dc
νϑ

a
μ = −V ac

μν ,

(184)
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• the d̄a
μ-transformation:

d̄c
ν c̄

a = −ϕ̄ac
ν + gf abdω̄bc

ν cd + gf abiω̄bc
ν ci,

d̄c
νϕ

ab
μ = −δμνδ

bcca,

d̄c
νω

ab
μ = δμνδ

bc

(
gf adicdci +

g

2
f adecdce

)
,

d̄c
νb

a = igf abd ϕ̄bc
ν cc + igf abi ϕ̄bc

ν ci − ig2f abdf dei ω̄bc
ν ceci

− i
g2

2
f abif dei ω̄bc

ν cdce − i
g2

2
f abdf def ω̄bc

ν cecf ,

d̄c
ν�

a
μ = −V̄ ac

μν ,

d̄c
νK

a
μ = −1

2
V̄ ac

μν ,

d̄c
νξ

a
μ = −1

2
Ū ac

μν,

d̄c
νϑ

a
μ = −Ū ac

μν.

(185)

We can also show that{
δa
μ, s

} = da
μ,

[
δ̄a
μ, s

] = d̄a
μ,

[
da

μ, s
] = 0,

{
d̄a

μ, s
} = 0. (186)

The symmetries of �0 will help us to determine a suitable set of dimension 2 operators which
can be consistently introduced in the theory. This will be the subject of the following section.

7.3. Dimension 2 condensates

In this section we shall briefly discuss about the subject of the dimension 2 condensates,
which are the result of the condensation of local dimension 2 operators. One should note
that the introduction of the horizon function in its localized form, expression (130), entails
the introduction of a dimension 2 condensate. In fact, the gap equation (106) implies that
the dimension 2 operator

(
Bab

μ

(
ϕab

μ − ϕ̄ab
μ

))
acquires a nonvanishing expectation value, i.e.〈

Bab
μ

(
ϕab

μ −ϕ̄ab
μ

)〉 �= 0. An analogous condensate is found in the Landau gauge [7, 8, 10, 12, 13],
where the gap equation for the Gribov parameter γ implies that

〈
f ABC

(
φAB

μ − φ̄AB
μ

)
AC

μ

〉 �= 0,
where

(
φAB

μ , φ̄AB
μ

)
are the auxiliary fields needed for the localization of the horizon function

in the Landau gauge.
Furthermore, in complete analogy with the case of the Landau gauge [10, 12, 13], other

dimension 2 condensates have to be taken into account in the maximal Abelian gauge, see also
[49] for the particular case of SU(2). More precisely, the following dimension 2 operators can
be introduced in a way which preserves renormalizability of the theory as well as its symmetry
content:

OA2 = Aa
μAa

μ, (187)

Oi
c̄×c = gf abicacb, (188)

Of̄ f = ϕ̄ab
μ ϕab

μ − ω̄ab
μ ωab

μ − c̄aca. (189)

The operator (187) is related to the dynamical mass generation for the off-diagonal gluons,
a feature which supports the Abelian dominance hypothesis. Its condensation has been
established in [44], where a dynamical off-diagonal gluon mass has been reported. The ghost
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operator (188) is needed in order to account for the dynamical breaking of the SL(2, R)

symmetry present in the ghost sector of the maximal Abelian gauge:

δ�0 = 0, δc̄a = ca, δba = gf abicbci +
g

2
f abccbcc. (190)

Its condensation has been analyzed recently in [55]. Concerning now the third operator,
equation (189), we note that it depends on the auxiliary fields (ϕ, ϕ̄, ω, ω̄). It is in fact needed
to account for the nontrivial dynamics developed by those fields. Besides, one can see that
this operator is invariant under the transformations (182)–(185). An analogous operator has
been found in the Landau gauge [10, 12, 13], where it has allowed us to reconcile the Gribov–
Zwanziger framework with the most recent lattice data on the gluon and ghost propagators
[20, 21].

Let us briefly show how these operators can be introduced in the theory, by taking the
example of the operator OA2 . The other operators can be handled by following an analogous
path. Let us introduce a BRST doublet of external sources:

sλ = J, sJ = 0, (191)

and let us define the following BRST invariant term:

SA2 = s

∫
d4x

(
1

2
λOA2 − ζ

2
λJ

)
=

∫
d4x

(
1

2
J OA2 +

1

2
λ sOA2 − ζ

2
J 2

)
, (192)

where ζ is a dimensionless constant parameter necessary to account for the ultraviolet
divergences affecting the correlation function

〈OA2(x)OA2(y)〉. (193)

As discussed in [44], the parameter ζ is uniquely determined by the renormalization group
equations. Expression (192) is thus added to the action �0, giving

�1 = �0 + SA2 . (194)

Keeping the source J (x) and setting all other external sources to their respective physical
values10, we can introduce the generating functional W[J ] according to

e−W[J ] =
∫

D� e−�0−
∫

d4x( 1
2 JOA2 − ζ

2 J 2). (195)

The vacuum expectation value of the operator OA2 is then obtained by differentiating with
respect to J:

δW[J ]

δJ

∣∣∣∣
J=0

= −1

2
〈OA2〉. (196)

In practice, solving (196) is a difficult task. A shortcut is usually employed, amounting to
make use of the Hubbard–Stratonovich field η(x). To introduce this field in the theory, one
inserts the unity

1 = N
∫

Dη e− 1
2ζ

∫
d4x(

η

g
+ 1

2 OA2 −ζJ )2

, (197)

12 We note that the external sources (�a,i
μ , Ka

μ,ϒa
μ, ξa

μ, ϑa
μ, La,i ) and λ(x) carry a nonvanishing ghost number, so

that their physical values vanish.
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where N is a normalization factor, so that expression (195) becomes

e−W[J ] =
∫

D�Dη e−�η+
∫

d4x
η

g
J
,

�η = �0 +
∫

d4x

(
η2

2g2ζ
+

η

2gζ
OA2 +

1

8ζ
(OA2)2

)
.

(198)

With W[J ] written in this way, we can achieve the following relation:

〈OA2〉 = − 2

g
〈η〉, (199)

which easily follows from expression (198) upon differentiation with respect to the source J.
The advantage of having introduced the Hubbard–Stratonovich field η relies on the fact that
the quadratic term J2 in equation (195) has been replaced by the term �η, equation (198).
Also from equation (199) one observes that a nonvanishing vacuum expectation value of the
Hubbard–Stratonovich field η gives a nonvanishing condensate 〈OA2〉. It remains thus to find
out whether the field η acquires a nonvanishing vacuum expectation value, a task which can be
accomplished by evaluating the effective potential corresponding to the action �η. A detailed
account of the analysis of the effective potential can be found in [44], where a nonvanishing
vacuum expectation value for η has emerged. Setting

η(x) = 〈η〉 + η̃(x), 〈η̃〉 = 0, (200)

we obtain

�η = �0 +
∫

d4x

( 〈η〉2

2g2ζ
+

η̃2

2g2ζ
+

〈η〉
2gζ

OA2 +
η̃

2gζ
OA2 +

1

8ζ
(OA2)2

)
. (201)

Introducing thus the gluon mass

m2 = 〈η〉
gζ

, (202)

we can also write

�η = �0 +
∫

d4x

(
ζm4

2
+

η̃2

2g2ζ
+

m2

2
OA2 +

η̃

2gζ
OA2 +

1

8ζ
(OA2)2

)
, (203)

from which one sees that the condensation of the operator OA2 results in the dynamical
generation of a gluon mass, i.e. m2

2 Aa
μAa

μ. This term will affect the tree-level off-diagonal
gluon propagator. In much the same way, the other operators Oi

c̄×c and Of̄ f will affect the
propagators of theory even at the tree level, as we shall see in the next section.

7.4. Tree-level gluon and ghost propagators

In this section we will establish the qualitative behavior of the gluon and ghost propagators by
taking into account the effects of the restriction to the Gribov region and of the condensation
of the dimension 2 operators (187)–(189), encoded in the following dynamical parameters:

〈OA2〉 ∼ m2,
〈
Oi

c̄×c

〉 ∼ vi, 〈Of̄ f 〉 ∼ μ2. (204)

Such parameters will appear in the resulting action as

� = �0 +
∫

d4x

(
m2

2
OA2 + vi Oi

c̄×c + μ2 Of̄ f + ‘interaction terms’

)
, (205)
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where � is the complete action containing all condensates. In order to evaluate the propagators,
it is sufficient to consider only the quadratic terms of �:

�quad = lim
α→0
β→0

∫
d4x

[
1

2
Aa

μ

(
(−∂2 + m2)δμν − 1 − α

α
∂μ∂ν

)
Aa

ν +
1

2
Ai

μ

(
−∂2δμν − 1 − β

β
∂μ∂ν

)
Ai

ν

− c̄a((−∂2 + μ2)δab − vigf abi)cb − c̄i (−∂2)ci + ϕ̄ab
μ (−∂2 + μ2)ϕab

μ

− ω̄ab
μ (−∂2 + μ2)ωab

μ +

√
2g2γ 4

N(N − 1)

(
f abiAi

μ +
1

2
f abcAc

μ

)(
ϕab

μ − ϕ̄ab
μ

)]
, (206)

where we have already integrated out the Lagrange multipliers (ba, bi) and where we have
taken the physical values of the sources (V , V̄ , U, Ū). A further integration over the auxiliary
localizing fields (ϕ, ϕ̄, ω, ω̄) gives the following expression in momentum space:

�quad = lim
α→0
β→0

∫
d4k

(2π)4

(
1

2
Aa

μ(k)Pab
μν(k;α)Ab

ν(−k) +
1

2
Ai

μ(k)Qij
μν(k;β)Aj

ν(−k)

− ca(k)Rab(k) cb(−k) − ci(k) δij k2 cj (−k)

)
, (207)

where

Pab
μν(k;α) = δab

(
δμν

(k2 + m2)(k2 + μ2) + (N − 2)g2γ 4/N(N − 1)

k2 + μ2
− 1 − α

α
kμkν

)
,

Qij
μν(k;β) = δij

(
δμν

k2(k2 + μ2) + 4g2γ 4/(N − 1)

k2 + μ2
− 1 − β

β
kμkν

)
,

Rab
μν(k) = δab(k2 + μ2) − gf abivi .

(208)

The tree-level propagators of the theory are thus given by

• the off-diagonal gluon propagator:〈
Aa

μ(k)Ab
ν(−k)

〉 = k2 + μ2

(k2 + m2)(k2 + μ2) + (N−2)g2γ 4

N(N−1)

(
δμν − kμkν

k2

)
δab ; (209)

• the diagonal gluon propagator:〈
Ai

μ(k)Aj
ν(−k)

〉 = k2 + μ2

k2(k2 + μ2) + 4g2γ 4

(N−1)

(
δμν − kμkν

k2

)
δij ; (210)

• the symmetric off-diagonal ghost propagator:

〈c̄a(k)cb(−k)〉symm = k2 + μ2

(k2 + μ2)2 + g2v2

(N−1)

δab ; (211)

• the antisymmetric off-diagonal ghost propagator:

〈c̄a(k)cb(−k)〉antisymm = gf abivi

(k2 + μ2)2 + g2v2

(N−1)

; (212)

• the diagonal ghost propagator:

〈c̄i (k)cj (−k)〉 = 1

k2
δij . (213)
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With the exception of the diagonal ghost propagator, equation (213), which exhibits a free
behavior, we observe that all remaining propagators turn out to be suppressed in the infrared
region, a result which can be seen as a direct generalization of what has been found in the case
of SU(2) [49].

The off-diagonal gluon propagator deserves a little comment. Note that it can be written
as 〈

Aa
μ(k)Ab

ν(−k)
〉 =

(
1

k2 + m2
− ρN(k)

)(
δμν − kμkν

k2

)
δab, (214)

where ρN(k) represents the deviation from the Yukawa-type behavior, and is given by

ρN(k) =
(N−2)g2γ 4

N(N−1)

(k2 + m2)
[
(k2 + m2)(k2 + μ2) + (N−2)g2γ 4

N(N−1)

] . (215)

The factor ρN(k) vanishes for N = 2 so that the off-diagonal gluon propagator behaves exactly
like the Yukawa propagator, as obtained in [32, 49] for the particular SU(2) case. However,
for N > 2, it seems to deviate from a pure Yukawa behavior, a feature which would be worth
to investigate by lattice simulations in the relevant case of SU(3).

8. Conclusions

In this work we have studied a few aspects of the issue of the Gribov copies in SU(N)

Euclidean Yang–Mills theories in the maximal Abelian gauge. The so-called Gribov region
� has been introduced and some of its properties have been established. Summarizing, the
region � is convex, bounded in all off-diagonal directions and unbounded in all diagonal ones.

The implementation of the restriction of the domain of integration in the functional integral
to the region � has been considered. A careful study of the horizon function has been provided.
In particular, we have shown that use of Gribov’s no pole condition allows us to select only
one candidate, given by expression (117). A local action from the restriction to the region �,
equation (130), has been constructed and its symmetry content established.

It is worth mentioning that the results obtained in [32, 47, 49] for the particular case of
SU(2) can be completely recovered by setting N = 2, which provides a very good check.

A detailed analysis of the propagators of the theory has been performed. The general case
of SU(N), N > 2, displays differences with respect to the case of SU(2). In particular, as can
be observed from expression (209), the off-diagonal component of the gluon propagator turns
out to be affected by the restriction to � as well as by the condensation of the operators
(187)–(189). The diagonal gluon propagator, equation (210), exhibits a Gribov–Stingl-
type behavior depending on the Gribov parameter γ and on the parameter μ corresponding
to the condensation of the operator (189). The symmetric off-diagonal ghost propagator,
equation (211), turns out to be dependent from the parameters μ and v2 = vivi while, as
expected, the antisymmetric off-diagonal ghost propagator, equation (212), turns out to be
directly proportional to the parameter vi stemming from the ghost condensate

〈
Oi

ghost

〉 ∼ vi .
All propagators are seen to be suppressed in the infrared region. Moreover, they are

nonvanishing at k = 0. Although numerical studies of the gluon and ghost propagators in the
maximal Abelian gauge have been performed only in the case of SU(2), these features seem
to be in very good agreement with the most recent numerical data [41]. From this point of
view, it would rather be interesting to perform a numerical study of SU(3) in order to check
our prevision.
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Appendix. Details on the calculation of the third-order off-diagonal ghost correlation
function

In order to evaluate the off-diagonal ghost correlation function 〈c̄a(x)cb(y)〉, let us start with
the usual Gell-Mann–Low formula theory:

〈c̄a(x)cb(y)〉 = 〈0|c̄a
0(x)cb

0(y) e−Sint[c̄0,c0]|0〉, (A.1)

where the fields appearing on the right-hand side of equation (A.1) are free fields and Sint[c̄, c]
stands for the interaction term given by

Sint[c̄, c] = −
∫

d4x
(
2gf abiAi

μc̄a∂μcb + gf abcAc
μc̄a∂μcb + g2f acif bcjAi

μAj
μc̄acb

+ g2f adcf bdiAc
μAi

μc̄acb − g2f caif dbiAc
μAd

μc̄acb
)
. (A.2)

To evaluate the aforementioned two-point correlation function we expand the term e−Sint till
the third order, so that

〈c̄a(x)cb(y)〉 = 〈0|c̄a(x)cb(y)

(
1 − Sint +

1

2
S2

int − 1

6
S3

int + · · ·
)

|0〉

= 〈0|c̄a(x)cb(y)|0〉 − 〈0|c̄a(x)cb(y) Sint|0〉 +
1

2
〈0|c̄a(x)cb(y) S2

int|0〉

− 1

6
〈0|c̄a(x)cb(y) S3

int|0〉 + · · · , (A.3)

where

〈0|c̄a(x)cb(y)|0〉 = δabG0(x − y), (A.4)

with

G0(x − y) =
∫

d4q

(2π)4

1

q2
eiq(x−y). (A.5)

We are interested in terms of order 3 in the gauge field A or, equivalently, of order g3. These
terms appear in the expression for S2

int and S3
int. Therefore, for the third-order correlation

function Gab
3 (x, y;A), one writes

Gab
3 (x, y;A) = 1

2

〈
c̄a(x)cb(y)

∫
d4x1 d4x2

(
4g3f a1b1i1f a2c2i2f b2c2j2Ai1

μ(x1)A
i2
ν (x2)A

j2
ν (x2)

+ 4g3f a1b1i1f a2d2c2f b2d2i2Ai1
μ(x1)A

c2
ν (x2)A

i2
ν (x2)

− 4g3f a1b1i1f c2a2i2f d2b2i2Ai1
μ(x1)A

c2
ν (x2)A

d2
ν (x2)

+ 2g3f a1b1c1f a2c2i2f b2c2j2Ac1
μ (x1)A

i2
ν (x2)A

j2
ν (x2)

+ 2g3f a1b1c1f a2d2c2f b2d2i2Ac1
μ (x1)A

c2
ν (x2)A

i2
ν (x2)

− 2g3f a1b1c1f c2a2i2f d2b2i2Ac1
μ (x1)A

c2
ν (x2)A

d2
ν (x2)

)
× c̄a1(x1) ∂x1

μ cb1(x1) c̄a2(x2)c
b2(x2)

〉
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+
1

6

〈
c̄a(x)cb(y)

∫
d4x1 d4x2 d4x3

× (
8g3f a1b1i1f a2b2i2f a3b3i3Ai1

μ(x1)A
i2
ν (x2)A

i3
σ (x3)

+ 12g3f a1b1i1f a2b2i2f a3b3c3Ai1
μ(x1)A

i2
ν (x2)A

c3
σ (x3)

+ 6g3f a1b1i1f a2b2c2f a3b3c3Ai1
μ(x1)A

c2
ν (x2)A

c3
σ (x3)

+ g3f a1b1c1f a2b2c2f a3b3c3Ac1
μ (x1)A

c2
ν (x2)A

c3
σ (x3)

)
× c̄a1(x1) ∂x1

μ cb1(x1) c̄a2(x2) ∂x2
μ cb2(x2) c̄a3(x3) ∂x3

μ cb3(x3)

〉
. (A.6)

Performing the Wick contractions, we obtain

Gab
3 (x, y;A) = 1

2

∫
d4x1 d4x2

(
4g3f a1b1i1f a2c2i2f b2c2j2Ai1

μ(x1)A
i2
ν (x2)A

j2
ν (x2)

+ 4g3f a1b1i1f a2d2c2f b2d2i2Ai1
μ(x1)A

c2
ν (x2)A

i2
ν (x2)

− 4g3f a1b1i1f c2a2i2f d2b2i2Ai1
μ(x1)A

c2
ν (x2)A

d2
ν (x2)

+ 2g3f a1b1c1f a2c2i2f b2c2j2Ac1
μ (x1)A

i2
ν (x2)A

j2
ν (x2)

+ 2g3f a1b1c1f a2d2c2f b2d2i2Ac1
μ (x1)A

c2
ν (x2)A

i2
ν (x2)

− 2g3f a1b1c1f c2a2i2f d2b2i2Ac1
μ (x1)A

c2
ν (x2)A

d2
ν (x2)

)
× [(

∂x1
μ 〈c̄a(x)cb1(x1)〉

)〈c̄a2(x2)c
b(y)〉〈c̄a1(x1)c

b2(x2)〉
+ 〈c̄a(x)cb2(x2)〉〈c̄a1(x1)c

b(y)〉 ∂x1
μ 〈c̄a2(x2)c

b1(x1)〉
]

− 1

6

∫
d4x1 d4x2 d4x3

(
8g3f a1b1i1f a2b2i2f a3b3i3Ai1

μ(x1)A
i2
ν (x2)A

i3
σ (x3)

+ 12g3f a1b1i1f a2b2i2f a3b3c3Ai1
μ(x1)A

i2
ν (x2)A

c3
σ (x3)

+ 6g3f a1b1i1f a2b2c2f a3b3c3Ai1
μ(x1)A

c2
ν (x2)A

c3
σ (x3)

+ g3f a1b1c1f a2b2c2f a3b3c3Ac1
μ (x1)A

c2
ν (x2)A

c3
σ (x3)

)
× [(

∂x1
μ 〈c̄a(x)cb1(x1)〉

)〈c̄a2(x2)c
b(y)〉(∂x3

σ 〈c̄a1(x1)c
b3(x3)〉

)
∂x2
ν 〈c̄a3(x3)c

b2(x2)〉
+
(
∂x1
μ 〈c̄a(x)cb1(x1)〉

)〈c̄a3(x3)c
b(y)〉(∂x2

ν 〈c̄a1(x1)c
b2(x2)〉

)
∂x3
σ 〈c̄a2(x2)c

b3(x3)〉
+
(
∂x2
ν 〈c̄a(x)cb2(x2)〉

)〈c̄a1(x1)c
b(y)〉(∂x1

μ 〈c̄a3(x3)c
b1(x1)〉

)
∂x3
σ 〈c̄a2(x2)c

b3(x3)〉
+
(
∂x2
ν 〈c̄a(x)cb2(x2)〉

)〈c̄a3(x3)c
b(y)〉(∂x3

σ 〈c̄a1(x1)c
b3(x3)〉

)
∂x1
μ 〈c̄a2(x2)c

b1(x1)〉
+
(
∂x3
σ 〈c̄a(x)cb3(x3)〉

)〈c̄a1(x1)c
b(y)〉(∂x1

μ 〈c̄a2(x2)c
b1(x1)〉

)
∂x2
ν 〈c̄a3(x3)c

b2(x2)〉
+
(
∂x3
σ 〈c̄a(x)cb3(x3)〉

)〈c̄a2(x2)c
b(y)〉(∂x2

ν 〈c̄a1(x1)c
b2(x2)〉

)
∂x1
μ 〈c̄a3(x3)c

b1(x1)〉
]
.

(A.7)

Renaming now some dummy indices, it follows that

Gab
3 (x, y;A) = 1

2

∫
d4x1 d4x2

(
4g3f a1b1i1f a2c2i2f b2c2j2Ai1

μ(x1)A
i2
ν (x2)A

j2
ν (x2)

+ 4g3f a1b1i1f a2d2c2f b2d2i2Ai1
μ(x1)A

c2
ν (x2)A

i2
ν (x2)

− 4g3f a1b1i1f c2a2i2f d2b2i2Ai1
μ(x1)A

c2
ν (x2)A

d2
ν (x2)

+ 2g3f a1b1c1f a2c2i2f b2c2j2Ac1
μ (x1)A

i2
ν (x2)A

j2
ν (x2)

+ 2g3f a1b1c1f a2d2c2f b2d2i2Ac1
μ (x1)A

c2
ν (x2)A

i2
ν (x2)
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− 2g3f a1b1c1f c2a2i2f d2b2i2Ac1
μ (x1)A

c2
ν (x2)A

d2
ν (x2)

)
× [(

∂x1
μ 〈c̄a(x)cb1(x1)〉

)〈c̄a2(x2)c
b(y)〉〈c̄a1(x1)c

b2(x2)〉
+ 〈c̄a(x)cb2(x2)〉〈c̄a1(x1)c

b(y)〉 ∂x1
μ 〈c̄a2(x2)c

b1(x1)〉
]

− 1

6

∫
d4x1 d4x2 d4x3

(
48g3f a1b1i1f a2b2i2f a3b3i3Ai1

μ(x1)A
i2
ν (x2)A

i3
σ (x3)

+ 24g3f a1b1i1f a2b2i2f a3b3c3Ai1
μ(x1)A

i2
ν (x2)A

c3
σ (x3)

+ 24g3f a1b1i1f a2b2c2f a3b3i3Ai1
μ(x1)A

c2
ν (x2)A

i3
σ (x3)

+ 24g3f a1b1c1f a2b2i2f a3b3i3Ac1
μ (x1)A

i2
ν (x2)A

i3
σ (x3)

+ 12g3f a1b1i1f a2b2c2f a3b3c3Ai1
μ(x1)A

c2
ν (x2)A

c3
σ (x3)

+ 12g3f a1b1c1f a2b2i2f a3b3c3Ac1
μ (x1)A

i2
ν (x2)A

c3
σ (x3)

+ 12g3f a1b1c1f a2b2c2f a3b3i3Ac1
μ (x1)A

c2
ν (x2)A

i3
σ (x3)

+ 6g3f a1b1c1f a2b2c2f a3b3c3Ac1
μ (x1)A

c2
ν (x2)A

c3
σ (x3)

)
× [(

∂x1
μ 〈c̄a(x)cb1(x1)〉

)〈c̄a2(x2)c
b(y)〉

× (
∂x3
σ 〈c̄a1(x1)c

b3(x3)〉
)
∂x2
ν 〈c̄a3(x3)c

b2(x2)〉
]
. (A.8)

It turns out to be convenient to introduce the following quantity:

G(3)(x, y;A) := 1

N(N − 1)
Gaa

3 (x, y;A). (A.9)

Using expression (A.4), we obtain

G(3)(x, y;A) = − 1

N(N − 1)

∫
d4x1 d4x2 d4x3

(
8g3f abif bcjf cakAi

μ(x1)A
j
ν(x2)A

k
σ (x3)

+ 4g3f abif bdjf dacAi
μ(x1)A

j
ν(x2)A

c
σ (x3)

+ 4g3f abif bdcf dajAi
μ(x1)A

c
ν(x2)A

j
σ (x3)

+ 4g3f abcf bdif dajAc
μ(x1)A

i
ν(x2)A

j
σ (x3)

+ 2g3f abif bdcf daeAi
μ(x1)A

c
ν(x2)A

e
σ (x3)

+ 2g3f abcf bdif daeAc
μ(x1)A

i
ν(x2)A

e
σ (x3)

+ 2g3f abcf bdef daiAc
μ(x1)A

e
ν(x2)A

i
σ (x3)

+ g3f abcf bdef daf Ac
μ(x1)A

e
ν(x2)A

f
σ (x3)

)
× [(

∂x1
μ G0(x − x1)

)
G0(x2 − y)

(
∂x3
σ G0(x1 − x3)

)
∂x2
ν G0(x3 − x2)

]
+

1

N(N − 1)

∫
d4x1 d4x2

(
2g3f abif bcjf ackAi

μ(x1)A
j
ν(x2)A

k
ν(x2)

+ 2g3f abif bdcf adjAi
μ(x1)A

c
ν(x2)A

j
ν(x2)

− 2g3f abif cbjf dajAi
μ(x1)A

c
ν(x2)A

d
ν (x2)

+ g3f abcf bdif adjAc
μ(x1)A

i
ν(x2)A

j
ν(x2)

+ g3f abcf bdef adiAc
μ(x1)A

e
ν(x2)A

i
ν(x2)

− g3f abcf dbif eaiAc
μ(x1)A

d
ν (x2)A

e
ν(x2)

)
× [(

∂x1
μ G0(x − x1)

)
G0(x2 − y)G0(x1 − x2)

+ G0(x − x2)G0(x1 − y) ∂x1
μ G0(x2 − x1)

]
. (A.10)

38



J. Phys. A: Math. Theor. 43 (2010) 245402 M A L Capri et al

Let us now show that almost all the terms in the double integrals vanish, i.e.

f abif bcjf ackAi
μ(x1)A

j
ν(x2)A

k
ν(x2) = −f abif acjf bckAi

μ(x1)A
j
ν(x2)A

k
ν(x2)

= −f abif ackf bcjAi
μ(x1)A

k
ν(x2)A

j
ν(x2)

= −f abif ackf bcjAi
μ(x1)A

j
ν(x2)A

k
ν(x2)

= 0, (A.11)

f abif bdcf adjAi
μ(x1)A

c
ν(x2)A

j
ν(x2) = −f abif adcf bdjAi

μ(x1)A
c
ν(x2)A

j
ν(x2)

= −f abi(−f adbf jdc − f adjf cdb)Ai
μ(x1)A

c
ν(x2)A

j
ν(x2)

= ( f abif adb︸ ︷︷ ︸
−f abif abd=0

f jdc + f abif adjf cdb)Ai
μ(x1)A

c
ν(x2)A

j
ν(x2)

= f abif adjf cdbAi
μ(x1)A

c
ν(x2)A

j
ν(x2)

= −f abif adjf bdcAi
μ(x1)A

c
ν(x2)A

j
ν(x2)

= 0, (A.12)

f abif cbjf dajAi
μ(x1)A

c
ν(x2)A

d
ν (x2) = −f abif cajf dbjAi

μ(x1)A
c
ν(x2)A

d
ν (x2)

= −f abif dajf cbjAi
μ(x1)A

d
ν (x2)A

c
ν(x2)

= −f abif dajf cbjAi
μ(x1)A

c
ν(x2)A

d
ν (x2)

= 0, (A.13)

f abcf bdif adjAc
μ(x1)A

i
ν(x2)A

j
ν(x2) = −f abcf adif bdjAc

μ(x1)A
i
ν(x2)A

j
ν(x2)

= −f abcf adjf bdiAc
μ(x1)A

j
ν(x2)A

i
ν(x2)

= −f abcf adjf bdiAi
μ(x1)A

i
ν(x2)A

j
ν(x2)

= 0, (A.14)

f abcf dbif eaiAc
μ(x1)A

d
ν (x2)A

e
ν(x2) = −f abcf daif ebiAc

μ(x1)A
d
ν (x2)A

e
ν(x2)

= −f abcf eaif dbiAc
μ(x1)A

e
ν(x2)A

d
ν (x2)

= −f abcf eaif dbiAc
μ(x1)A

d
ν (x2)A

e
ν(x2)

= 0. (A.15)

The only term that does not vanish is f abcf bdef adiAc
μ(x1)A

e
ν(x2)A

i
ν(x2). Thus, we can finally

write G(3) as

G(3)(x, y;A) = − 1

N(N − 1)

∫
d4x1 d4x2 d4x3

(
8g3f abif bcjf cakAi

μ(x1)A
j
ν(x2)A

k
σ (x3)

+ 4g3f abif bdjf dacAi
μ(x1)A

j
ν(x2)A

c
σ (x3)

+ 4g3f abif bdcf dajAi
μ(x1)A

c
ν(x2)A

j
σ (x3)

+ 4g3f abcf bdif dajAc
μ(x1)A

i
ν(x2)A

j
σ (x3)

+ 2g3f abif bdcf daeAi
μ(x1)A

c
ν(x2)A

e
σ (x3)

+ 2g3f abcf bdif daeAc
μ(x1)A

i
ν(x2)A

e
σ (x3)

+ 2g3f abcf bdef daiAc
μ(x1)A

e
ν(x2)A

i
σ (x3)
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+ g3f abcf bdef daf Ac
μ(x1)A

e
ν(x2)A

f
σ (x3)

)
× [(

∂x1
μ G0(x − x1)

)
G0(x2 − y)

(
∂x3
σ G0(x1 − x3)

)
∂x2
ν G0(x3 − x2)

]
+

1

N(N − 1)

∫
d4x1 d4x2 g3f abcf bdef adiAc

μ(x1)A
e
ν(x2)A

i
ν(x2)

× [(
∂x1
μ G0(x − x1)

)
G0(x2 − y)G0(x1 − x2)

+ G0(x − x2)G0(x1 − y) ∂x1
μ G0(x2 − x1)

]
. (A.16)
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